-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
24 changed files
with
775 additions
and
130 deletions.
There are no files selected for viewing
170 changes: 170 additions & 0 deletions
170
SimSystem/src/main/java/mathtools/distribution/KumaraswamyDistribution.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
/** | ||
* Copyright 2024 Alexander Herzog | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
package mathtools.distribution; | ||
|
||
import java.io.Serializable; | ||
|
||
import org.apache.commons.math3.distribution.AbstractRealDistribution; | ||
import org.apache.commons.math3.exception.OutOfRangeException; | ||
import org.apache.commons.math3.random.RandomGenerator; | ||
import org.apache.commons.math3.special.Gamma; | ||
|
||
/** | ||
* Klasse zur Abbildung der Kumaraswamy-Verteilung | ||
* @author Alexander Herzog | ||
*/ | ||
public class KumaraswamyDistribution extends AbstractRealDistribution implements Cloneable, Serializable, DistributionWithRandom { | ||
/** | ||
* Serialisierungs-ID der Klasse | ||
* @see Serializable | ||
*/ | ||
private static final long serialVersionUID=-5073494121705653463L; | ||
|
||
/** | ||
* Parameter 1 | ||
*/ | ||
public final double a; | ||
|
||
/** | ||
* Parameter 2 | ||
*/ | ||
public final double b; | ||
|
||
/** | ||
* Untere Grenze des Trägers | ||
*/ | ||
public final double c; | ||
|
||
/** | ||
* Obere Grenze des Trägers | ||
*/ | ||
public final double d; | ||
|
||
/** | ||
* Vorab berechneter Erwartungswert | ||
* @see #getNumericalMean() | ||
*/ | ||
private final double mean; | ||
|
||
/** | ||
* Vorab berechnete Varianz | ||
* @see #getNumericalVariance() | ||
*/ | ||
private final double variance; | ||
|
||
/** | ||
* Konstruktor | ||
* @param a Erster Parameter | ||
* @param b Zweiter Parameter | ||
* @param c Untere Grenze des Trägers | ||
* @param d Obere Grenze des Trägers | ||
*/ | ||
public KumaraswamyDistribution(final double a, final double b, final double c, final double d) { | ||
super(null); | ||
this.a=Math.max(0.0001,a); | ||
this.b=Math.max(0.0001,b); | ||
this.c=c; | ||
this.d=Math.max(this.c+0.0001,d); | ||
|
||
final double m1=this.b*Gamma.gamma(1+1/this.a)*Gamma.gamma(this.b)/Gamma.gamma(1+1/this.a+this.b); | ||
mean=m1*(this.d-this.c)+this.c; | ||
final double m2=this.b*Gamma.gamma(1+2/this.a)*Gamma.gamma(this.b)/Gamma.gamma(1+2/this.a+this.b); | ||
variance=(m2-m1*m1)*(this.d-this.c)*(this.d-this.c); | ||
} | ||
|
||
/** | ||
* Copy-Konstruktor | ||
* @param source Zu kopierende Ausgangsverteilung | ||
*/ | ||
public KumaraswamyDistribution(final KumaraswamyDistribution source) { | ||
this((source==null)?0:source.a,(source==null)?10:source.b,(source==null)?0:source.c,(source==null)?10:source.d); | ||
} | ||
|
||
@Override | ||
public double density(double x) { | ||
if (x<c || x>d) return 0; | ||
x=(x-c)/(d-c); | ||
return a*b*Math.pow(x,a-1)*Math.pow(1-Math.pow(x,a),b-1); | ||
} | ||
|
||
@Override | ||
public double cumulativeProbability(double x) { | ||
if (x<=c) return 0; | ||
if (x>=d) return 1; | ||
x=(x-c)/(d-c); | ||
return 1-Math.pow(1-Math.pow(x,a),b); | ||
} | ||
|
||
@Override | ||
public KumaraswamyDistribution clone() { | ||
return new KumaraswamyDistribution(a,b,c,d); | ||
} | ||
|
||
@Override | ||
public double getNumericalMean() { | ||
return mean; | ||
} | ||
|
||
@Override | ||
public double getNumericalVariance() { | ||
return variance; | ||
} | ||
|
||
@Override | ||
public double getSupportLowerBound() { | ||
return c; | ||
} | ||
|
||
@Override | ||
public double getSupportUpperBound() { | ||
return d; | ||
} | ||
|
||
@Override | ||
public boolean isSupportLowerBoundInclusive() { | ||
return true; | ||
} | ||
|
||
@Override | ||
public boolean isSupportUpperBoundInclusive() { | ||
return true; | ||
} | ||
|
||
@Override | ||
public boolean isSupportConnected() { | ||
return true; | ||
} | ||
|
||
@Override | ||
public double inverseCumulativeProbability(final double p) throws OutOfRangeException { | ||
if (p<0.0 || p>1.0) throw new OutOfRangeException(p,0,1); | ||
|
||
if (p==0.0) return getSupportLowerBound(); | ||
if (p==1.0) return getSupportUpperBound(); | ||
|
||
/* | ||
p=1-(1-x^a)^b | ||
1-x^a= | ||
(1-(1-p)^(1/b))^(1/a)=x | ||
*/ | ||
return Math.pow(1-Math.pow(1-p,1/b),1/a)*(d-c)+c; | ||
} | ||
|
||
@Override | ||
public double random(final RandomGenerator generator) { | ||
return inverseCumulativeProbability(generator.nextDouble()); | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.