Skip to content

CrossMatch: Enhance Semi-Supervised Medical Image Segmentation with Perturbation Strategies and Knowledge Distillation

License

Notifications You must be signed in to change notification settings

AiEson/CrossMatch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CrossMatch

Code for this paper: CrossMatch: Enhance Semi-Supervised Medical Image Segmentation with Perturbation Strategies and Knowledge Distillation

🎉🎉🎉 This paper has been accepted by IEEE Journal of Biomedical and Health Informatics !

CrossMatch Paper: IEEE arXiv

overview

Requirements

  1. Create conda environment:
    conda create -n CrossMatch python=3.11
  2. Clone the repo:
    git clone https://github.com/AiEson/CrossMatch.git
  3. Activate the environment:
    conda activate CrossMatch
  4. Install the requirements:
    cd CrossMatch
    pip install -r requirements.txt

Usage

LA dataset

One click to run:

cd LA/code
bash train.sh

ACDC dataset

One click to run:

cd ACDC
bash scripts/train.sh gpu_num port
# like `bash scripts/train.sh 4 12333` for 4 GPUs and port 12333

Results

LA dataset results

  • The training set consists of 8 labeled scans and 72 unlabeled scans and the testing set includes 20 scans.
Method Reference Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓
UA-MT (MICCAI'19) 85.81 75.41 18.25 5.04
SASSNet (MICCAI'20) 85.71 75.35 14.74 4.00
DTC (AAAI'21) 84.55 73.91 13.80 3.69
MC-Net (MICCAI'21) 86.87 78.49 11.17 2.18
URPC (MedIA'22) 83.37 71.99 17.91 4.41
SS-Net (MICCAI'22) 86.56 76.61 12.76 3.02
MC-Net+ (MedIA'22) 87.68 78.27 10.35 1.85
DMD (MICCAI'23) 89.70 81.42 6.88 1.78
BCP (CVPR'23) 89.55 81.22 7.10 1.69
UniMatch (CVPR'23) 89.09 80.47 12.50 3.59
CAML (MICCAI'23) 89.62 81.28 8.76 2.02
Ours 91.33 84.11 5.29 1.53
  • The training set consists of 16 labeled scans and 64 unlabeled scans and the testing set includes 20 scans.
Method Reference Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓
UA-MT (MICCAI'19) 88.18 79.09 9.66 2.62
SASSNet (MICCAI'20) 88.11 79.08 12.31 3.27
DTC (AAAI'21) 87.79 78.52 10.29 2.50
MC-Net (MICCAI'21) 90.43 82.69 6.52 1.66
URPC (MedIA'22) 87.68 78.36 14.39 3.52
SS-Net (MICCAI'22) 88.19 79.21 8.12 2.20
MC-Net+ (MedIA'22) 90.60 82.93 6.27 1.58
DMD (MICCAI'23) 90.46 82.66 6.39 1.62
BCP (CVPR'23) 90.18 82.36 6.64 1.61
UniMatch (CVPR'23) 90.77 83.18 7.21 2.05
CAML (MICCAI'23) 90.78 83.19 6.11 1.68
Ours 91.61 84.57 5.36 1.57

ACDC dataset results

  • The training set consists of 3 labeled scans and 67 unlabeled scans and the testing set includes 20 scans.
Method Reference Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓
UA-MT (MICCAI'19) 46.04 35.97 20.08 7.75
SASSNet (MICCAI'20) 57.77 46.14 20.05 6.06
DTC (AAAI'21) 56.90 45.67 23.36 7.39
MC-Net (MICCAI'21) 62.85 52.29 7.62 2.33
URPC (MedIA'22) 55.87 44.64 13.60 3.74
SS-Net (MICCAI'22) 65.82 55.38 6.67 2.28
DMD (MICCAI'23) 80.60 69.08 5.96 1.90
UniMatch (CVPR'23) 84.38 75.54 5.06 1.04
Ours 88.27 80.17 1.53 0.46

  • The training set consists of 7 labeled scans and 63 unlabeled scans and the testing set includes 20 scans.
Method Reference Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓
UA-MT (MICCAI'19) 81.65 70.64 6.88 2.02
SASSNet (MICCAI'20) 84.50 74.34 5.42 1.86
DTC (AAAI'21) 84.29 73.92 12.81 4.01
MC-Net (MICCAI'21) 86.44 77.04 5.50 1.84
URPC (MedIA'22) 83.10 72.41 4.84 1.53
SS-Net (MICCAI'22) 86.78 77.67 6.07 1.40
DMD (MICCAI'23) 87.52 78.62 4.81 1.60
UniMatch (CVPR'23) 88.08 80.10 2.09 0.45
Ours 89.08 81.44 1.52 0.52

Qualitative results

la_qulti

Citation

If you find this project useful, please consider citing:

@ARTICLE{CrossMatch,
  author={Zhao, Bin and Wang, Chunshi and Ding, Shuxue},
  journal={IEEE Journal of Biomedical and Health Informatics}, 
  title={CrossMatch: Enhance Semi-Supervised Medical Image Segmentation with Perturbation Strategies and Knowledge Distillation}, 
  year={2024},
  volume={},
  number={},
  pages={1-13},
  keywords={Perturbation methods;Data models;Predictive models;Biomedical imaging;Decoding;Accuracy;Training;Semi-supervised segmentation;Self-knowledge distillation;Image perturbation},
  doi={10.1109/JBHI.2024.3463711}}

Acknowledgement

  • This code is adapted from UA-MT, DTC and UniMatch .
  • We thank Lequan Yu, Xiangde Luo and Lihe Yang for their elegant and efficient code base.

About

CrossMatch: Enhance Semi-Supervised Medical Image Segmentation with Perturbation Strategies and Knowledge Distillation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published