This repository is designed to help researchers create reproducible experiments. Inspired by the epfml/llm-baselines codebase and the nanoGPT benchmark.
Install dependencies:
pip install -r requirements.txt
Run a simple training on the Slimpajama dataset (6B subset, 24GBs decompressed, takes a few minutes to download):
python ./src/main.py --config_format base
The above command trains a 123.59M parameters model. It trains for 25k iterations with a batch size of 128=32x4 (4 gradient accumulation steps), using a cosine schedule with a maximum learning rate of 1e-3 that is reduced to 1e-4 at the end of training. The model is saved in the ./exps
folder.
This training takes roughly ~3h on a single A100 (80GB) GPU. The plot of the training and validation loss should look roughly like this:
You can check out the wandb run for yourself here.
Here are the possible parameters you can use (copypasted from config/base.py
):
# General training params
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--acc_steps', default=4, type=int)
parser.add_argument('--seed', default=0, type=int) # random seed for the parameters
parser.add_argument('--data_seed', default=1337, type=int) # random seed defining the data ordering
parser.add_argument('--eval_interval', default=200, type=int)
parser.add_argument('--full_eval_at', nargs="+", type=int)
parser.add_argument('--eval_batches', default=32, type=int)
parser.add_argument('--device', default='cuda:0', type=str) # see below to run on multiple GPUs
parser.add_argument('--iterations', default=25000, type=int) # total number of training iterations
parser.add_argument('--warmup_steps', default=300, type=int)
parser.add_argument('--lr', default=1e-3, type=float)
parser.add_argument('--wsd_final_lr_scale', default=0.0, type=float) # wsd scheduler
parser.add_argument('--wsd_fract_decay', default=0.1, type=float) # wsd scheduler
parser.add_argument('--decay_type', default='linear', choices=['linear', 'cosine', 'exp', 'miror_cosine', 'square', 'sqrt'])
parser.add_argument('--dd_second_decay_type', default='linear', choices=['linear', 'cosine', 'exp', 'miror_cosine', 'square', 'sqrt'])
parser.add_argument('--dd_first_lr_factor', default=1e-2, type=float)
parser.add_argument('--weight_decay', default=0.1, type=float) # I recommend you keep this value, else instabilities might arise
parser.add_argument('--beta1', default=0.9, type=float) # adam parameter
parser.add_argument('--beta2', default=0.95, type=float) # adam parameter
parser.add_argument('--scheduler', default='cos', choices=['linear', 'cos', 'wsd', 'cos_inf', 'none', 'dd'])
parser.add_argument('--cos_inf_steps', default=0, type=int) # cos_inf scheduler
parser.add_argument('--opt', default='adamw', choices=['adamw', 'sgd', 'muon', 'soap', 'ademamix', 'ademamix2', 'lion', 'sf-adamw', 'sf-sgd', 'signsgd', 'signum', 'sgdf', 'prodigy', 'sophiag', 'shampoo', 'adopt', 'clip-adagrad', 'clip-adagrad-delay-eta', 'clip-adam', 'clip-adam-delay-eta', 'mars', 'adafactor', 'lamb'])
parser.add_argument('--eval_freq', default=200, type=int) # in iterations
parser.add_argument('--results_base_folder', default="./exps", type=str) # where the checkpoints will be saved
parser.add_argument('--grad_clip', default=0.0, type=float) # default value is 1.0 in NanoGPT
parser.add_argument('--momentum', default=0.9, type=float)
parser.add_argument('--shampoo_beta', default=-1.0, type=float)
parser.add_argument('--precondition_frequency', default=10, type=int)
parser.add_argument('--max_precond_dim', default=10000, type=int)
parser.add_argument('--merge_dims', default=False, type=bool) # merge dimensions till the product of the dimensions is less than or equal to max_precond_dim
parser.add_argument('--precondition_1d', default=False, type=bool)
parser.add_argument('--normalize_grads', default=False, type=bool)
parser.add_argument('--soap_data_format', default='channels_first', type=str)
parser.add_argument('--correct_bias', default=True, type=bool)
parser.add_argument('--nesterov', default=False, type=bool) # whether to use Nesterov-style momentum
parser.add_argument('--muon_ns_steps', default=5, type=int) # the number of steps to use in the newton schulz, if it is iterative
parser.add_argument('--muon_lr_factor', default=0.02, type=float) # a factor by which to reduce the lr for muon
parser.add_argmunet('--adema_beta3', default=0.9, type=float) # beta3 in AdEMAMix
parser.add_argument('--adema_alpha', default=2.0, type=float) # alpha in AdEMAMix
parser.add_argument('--adema_beta3_warmup', default=None, type=int) # AdEMAMix hyperparameter
parser.add_argument('--adema_alpha_warmup', default=None, type=int) # AdEMAMix hyperparameter
parser.add_argument('--schedulefree_r', defalut=0.0, type=float) # schedulefree hyperparameter
parser.add_argument('--weight_lr_power', default=2.0, type=float) # schedulefree hyperparameter
parser.add_argument('--model_sharding', default=None, type=bool) # Adam-mini
parser.add_argument('--adam_mini_verbose', default=False, type=bool) # print all the logs if true
parser.add_argument('--log_interval', default=50, type=int)
parser.add_argument('--dampening', default=0.0, type=float)
parser.add_argument('--prodigy_beta3', default=None, type=float) # coefficients for computing the Prodidy stepsize using running averages
parser.add_argument('--prodigy_decouple', default=True, type=bool) # Use AdamW style decoupled weight decay
parser.add_argument('--prodigy_use_bias_correction', default=False, type=bool)
parser.add_argument('--prodigy_safeguard_warmup', default=False, type=bool) # Remove lr from the denominator of D estimate to avoid issues during warm-up stage. Off by default.
parser.add_argument('--prodigy_fsdp_in_use', default=False, type=bool)
parser.add_argument('--sophia_rho', default=0.04, type=float)
parser.add_argument('--clipping_type', default='no', choices=['no', 'local', 'elementwise']) # for methods with clipping
parser.add_argument('--clipping_eta', default=1.0, type=float)
parser.add_argument('--mars_type', default='mars-adamw', choices=['mars-adamw', 'mars-lion', 'mars-shampoo'],)
parser.add_argument('--mars_vr_gamma', default=0.025, type=float)
parser.add_argument('--mars_is_approx', default=True, type=float)
parser.add_argument('--mars_lr', default=3e-3, type=float)
parser.add_argument('--mars_beta1', default=0.95, type=float)
parser.add_argument('--mars_beta2', default=0.99, type=float)
parser.add_argument('--adafactor_decay_rate', default=-0.8, type=float)
parser.add_argument('--lamb_use_bias_correction', default=False, type=bool)
# Dataset params
parser.add_argument('--dataset', default='slimpajama', choices=['slimpajama', 'wikitext', 'shakespeare-char', 'arxiv', 'arxiv2000', 'arxiv+wiki', 'openwebtext2', 'redpajama', 'redpajamav2', 'slimpajama_chunk1', 'fineweb', 'finewebedu'])
parser.add_argument('--tokenizer', default='gpt2', type=str, choices=['gpt2', 'mistral'])
parser.add_argument('--vocab_size', default=50304, type=int)
parser.add_argument('--data_in_ram', action='store_true') # force the data to RAM, you most likely do not need this
# Model params
parser.add_argument('--model', default='base', choices=['base', 'llama', 'test'])
parser.add_argument('--parallel_block', action='store_true')
parser.add_argument('--use_pretrained', default='none', type=str) # 'none', 'gpt2' or a path to the pretraind model
parser.add_argument('--from_dense', action='store_true')
parser.add_argument('--init_std', default=0.02, type=float)
parser.add_argument('--dropout', default=0.0, type=float) # keep to 0 unless in low data regime (e.g. wikitext)
parser.add_argument('--n_head', default=12, type=int)
parser.add_argument('--n_layer', default=12, type=int) # depth in (att + ff) blocks
parser.add_argument('--n_embd', default=768, type=int) # hidden size ...
parser.add_argument('--sequence_length', default=512, type=int)
parser.add_argument('--dtype', default='bfloat16', type=str, choices=['float32', 'float16', 'bfloat16'],)
parser.add_argument('--bias', default=False, type=bool)
parser.add_argument('--compile', action='store_true') # if true then model is compiled
parser.add_argument('--rmsnorm_eps', default=1e-5, type=float) # used by the llama model
parser.add_argument('--multiple_of', default=256, type=int) # used by the llama model make SwiGLU hidden layer size multiple of large power of 2
parser.add_argument('--n_kv_head', default=None, type=int) # for Adam-mini
# Checkpointing
parser.add_argument('--results_base_folder', default='./exps', type=str)
parser.add_argument('--permanent_ckpt_interval', default=0, type=int)
parser.add_argument('--latest_ckpt_interval', default=0, type=int)
parser.add_argument('--resume_from', default=None, type=str)
parser.add_argument('--resume_from_swa', default=None, type=str)
parser.add_argument('--auto_resume', default=True)
# logging params (WandB)
parser.add_argument('--wandb', action='store_true') # whether to use wandb or not
parser.add_argument('--wandb_project', default='my-project', type=str)
parser.add_argument('--wandb_entity', default=None, type=none_or_str) # for the team projects
parser.add_argument('--wandb_run_prefix', default='none', type=str) # is added before the autogenerated experiment name
parser.add_argument('--eval_seq_prefix', default="Once upon a time", type=str) # prefix used to generate sequences
parser.add_argument('--log_dynamics', action='store_true')
# Distributed args
parser.add_argument('--distributed_backend', default=None, type=str, required=False,
choices=distributed.registered_backends()) # distributed backend type (e.g. nccl)
You need to give your wandb authorize key in order to send the data to your wandb account. If you start jobs on a server without access to prompt, then you can set the WANDB_API_KEY
variable within your script:
# this is a script that could be executed on a server
pip install -r requirements.txt # install req.
export WANDB_API_KEY="put your authorize key here, to find it: https://wandb.ai/authorize"
python ./src/main.py --config_format base --wandb --wandb_project "my awesome project" --n_layer 7 --model base --seed 123
Feel free to add a new architecture, algorithm, dataset, or just modify our code. The structure of the project is the following:
src/
main.py # pick the right data, model, and training function
config/
__init__.py # contains CONFIG_FORMAT_TO_MODULE_MAP mapping the name given to the --config_format flag with a python conf file
base.py # config for the base model
data/
utils.py # contains the get_dataset function
wikitext.py # load/process wikitext
arxiv.py # load/process arxiv
fineweb.py # load/process the Fineweb dataset
slimpajama.py
...
models/
utils.py # contains the get_model function
base.py # contains the standard transformer base architecture
llama.py # llama architecture
optim/
utils.py # contains eval and get_batch functions
base.py # training function for the base and llama models
...
distributed/
# code to enable simple distributed training
- Given the above structure, to add your own model, you can just fork this repository and modify the
./src/models/base.py
file, then if necessary update./src/optim/base.py
in case you need some custom training loop or evaluation. You also need to fork the./src/config/base.py
file to add your own parameters, which imply adding your new config to the mappingCONFIG_FORMAT_TO_MODULE_MAP
in./src/config/__init__.py
. - To add a new dataset, create a new file in the
./src/data
folder, take a look atwikitext.py
for the expected format. - For optimizers, store all code inside the
./src/optim/
directory; it would be convenient if you simply add one fileyet_another_method.py
. Make sure to reference you optimizer with its adjusted arguments in./src/main.py
,./src/config/base.py
andREADME.md
files of your branch/fork.
We use black and isort for all pull requests. Before committing your code, simply run black . && isort .
Given a multi-GPU machine with e.g. 4 GPUs, one can distribute the training using data-parallelism:
torchrun --nproc_per_node=4 ./src/main.py --config_format base --distributed_backend nccl --dataset slimpajama --model base
When using multiple GPUs, the data will be distributed among the GPUs by dividing the number of accumulation steps by the number of nodes. For instance if we train with a batch size of 32 and 4 accumulation steps, then each GPU will process batches of 32 elements and do 1 accumulation steps. For this reason we require acc_steps
to be a multiple of the number of GPUs.
If do not have access to a GPU or just want to try the code locally on your device, you can try the Shakespeare dataset with character-level tokens:
python ./src/main.py --n_layer=2 --n_head=4 --n_embd=128 --sequence_length=256 --dataset=shakespeare-char --device=cpu --vocab_size=96