-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
66 additions
and
1 deletion.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
--- | ||
title: 高数(微积分)的知识框架 | ||
author: Ash | ||
pubDatetime: 2024-02-02T24:00:00Z | ||
postSlug: "20240202" | ||
featured: false | ||
draft: false | ||
tags: | ||
- 考研 | ||
- 高数 | ||
description: 整体的知识框架 | ||
--- | ||
|
||
# 高数(微积分) | ||
## 知识框架 | ||
![知识框架](/src/assets/images/高数/大纲.png) | ||
## 重点 | ||
- **一元函数微积分**(全部) | ||
> 基础/重点/难点 | ||
- 多元函数 | ||
- 全微分 | ||
## 年年考 | ||
- 一元函数 | ||
- 极限(分值高) | ||
- 导数 | ||
- 微分方程 | ||
> 欧拉方程,要求,考过两次 | ||
## 难题 | ||
- 一元函数微积分 | ||
> 多数难题在一元微积分 | ||
- 微分 | ||
- 极限 | ||
> 递推关系定义的数列极限 | ||
- 微分中值定理及相关的证明题 (难点/重点) | ||
- 积分 | ||
- 定积分 | ||
- 多元函数微积分 | ||
- 积分 | ||
- 重积分 | ||
- 无穷级数 | ||
- 常数项级数 | ||
- 常数项级数的敛散性的证明题 | ||
- 幂级数 | ||
- 幂级数的求和(重点/难点) | ||
## 没考过 | ||
- 多元函数 | ||
- 重极限 | ||
- 空间解析几何和向量代数 | ||
> 多元微积分的基础,近10年没有专门出题考,顺带考,只需要学基础 | ||
## 不做要求 | ||
- 近似计算 | ||
- \* 号内容,大部分不要求 | ||
|
||
## 内容 | ||
> 数学要学懂,不只是记住。 | ||
- 一元微积分 | ||
- 可导 -> 连续, ~~连续 -> 可导~~ | ||
- 可导和可微是等价的 | ||
- 导数来研究函数的极限--洛必达法则 | ||
- 导数来函数单调性 | ||
- 多元微积分 | ||
- ~~可导 -> 连续~~,~~连续 -> 可导~~ | ||
- 可微 -> 可导,~~可导 -> 可微~~ | ||
- 没有函数单调性的概念 |