The code in this repository shows an example of maximum likelihood estimation (MLE) for choice data in a contextual bandit task.
Example paper with this task and analysis approach:
- Leong YC, Radulescu A, Daniel R, DeWoskin V, Niv Y. Dynamic Interaction between Reinforcement Learning and Attention in Multidimensional Environments. Neuron. 2017 Jan 18;93(2):451-463. doi: 10.1016/j.neuron.2016.12.040. PMID: 28103483; PMCID: PMC5287409.
├── contextual-bandit
│ ├── data
│ ├── fits
│ ├── libraries
│ │ ├── Data.py
│ │ ├── FeatureRL.py
│ │ ├── fitting.py
│ │ ├── World.py
├── ReadMe.md
├── fit-frl-choice.ipynb
└── .gitignore