Skip to content

An accurate and generalizable deep learning framework for iris recognition.

Notifications You must be signed in to change notification settings

ChujunWhu/UniNet-Pytorch

 
 

Repository files navigation

UniNet-Pytorch

An accurate and generalizable deep learning framework for iris recognition.

参见:
Zijing Zhao and Ajay Kumar, "Towards More Accurate Iris Recognition Using Deeply Learned Spatially Corresponding Features", Internation Conference on Computer Vision (ICCV), Spotlight, Venice, Italy, 2017.

Install

  • Python 3.6
  • Pytorch 1.0
  • torchvision 0.2.2
  • opencv 3.4
  • caffe(可选,用于模型转换)
  • tqdm(可选,看着舒服)

Code structure

  • ICCV17_release
    • 论文附带的源代码与caffe模型
  • models
    • 转换得到的Pytorch模型,其中将原论文中提到的FeatNet与MaskNet分开保存
  • util
    • caffemodel2pth.py
      • 将caffemodel中的网络参数转存为pth格式,可被pytorch加载
    • normalize.py
      • 虹膜图像归一化
    • normalize_tool.py
      • 虹膜图像归一化工具
      • 左键标注, 右键画圆(至少3个点), 'q'键确认, 其他键取消
      • 先虹膜, 后瞳孔
    • segment.py
      • 虹膜图像分割
  • enroll_dataset.py
    • 注册整个文件夹中的图像
  • enroll_single.py
    • 注册单个的图像
  • evaluation.py
    • 评估用代码
    • TODO:代码性能测试
  • match.py
    • 比对代码
    • TODO:速度极慢, python的多线程无用,需要设计成batch的
    • TODO:代码太老了
  • verify.py
    • 识别代码, 将提取得到的mat与文件夹里的全部mat比对

About

An accurate and generalizable deep learning framework for iris recognition.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 85.4%
  • MATLAB 14.1%
  • M 0.5%