Skip to content

Commit

Permalink
Add plots for variables in pressure coordinates
Browse files Browse the repository at this point in the history
The plots added are bias plots at 850 hPa, 500 hPa, and 250 hPa and
lat - pressure plots.
  • Loading branch information
ph-kev committed Dec 5, 2024
1 parent 6e5a9d6 commit 1cd54c5
Show file tree
Hide file tree
Showing 5 changed files with 336 additions and 7 deletions.
6 changes: 6 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,12 @@ by identifying where elevation is greater than 0. Note, this can lead to
misidentification of ocean in some areas of the globe that are inland but below
sea level (Dead Sea, Death Valley, ...).

### Leaderboard for variables over longitude, latitude, time, and pressure - PR [#1094](https://github.com/CliMA/ClimaCoupler.jl/pull/1094)

As a part of the post processing pipeline, bias plots for variables at the
pressure levels of 850.0, 500.0, 250.0 hPa and bias plots over latitude and
pressure levels are being created.



### Code cleanup
Expand Down
11 changes: 11 additions & 0 deletions docs/src/leaderboard.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,3 +51,14 @@ must be initialized for each variable of interest. The CliMA model is added with
the `RMSEVariable`. It is assumed that the `RMSEVariable` contains only the columns "DJF",
"MAM", "JJA", "SON", and "ANN" in that order. The file `leaderboard.jl` will load the
appropriate data into the `RMSEVariable`.

### Add a new variable to compare against observations in pressure coordinates
To add a new variable, you only need to modify the variable `sim_var_pfull_dict` in the
function `get_sim_var_in_pfull_dict`, the variable `obs_var_dict` in the function
`get_obs_var_in_pfull_dict`, and the variable `compare_vars_biases_plot_extrema` in the
function `get_compare_vars_biases_plot_extrema_pfull`. The variables and functions are
defined exactly the same as their analogous versions in the section above.

It is expected that the dimensions of the variables are time, latitude, longitude, and
pressure in no particular order and the units for the pressure dimension is expected to be
`hPa`.
159 changes: 153 additions & 6 deletions experiments/ClimaEarth/leaderboard/data_sources.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import ClimaAnalysis
import ClimaUtilities.ClimaArtifacts: @clima_artifact
import OrderedCollections: OrderedDict

# Tuple of short names for loading simulation and observational data
sim_obs_short_names_no_pr = [
Expand Down Expand Up @@ -36,7 +37,8 @@ end
"""
get_compare_vars_biases_plot_extrema()
Return a dictionary mapping short names to ranges for the bias plots.
Return a dictionary mapping short names to ranges for the bias plots. This is
used by the function `compute_leaderboard`.
To add a variable to the leaderboard, add a key-value pair to the dictionary
`compare_vars_biases_plot_extrema` whose key is a short name key is the same
Expand Down Expand Up @@ -66,7 +68,7 @@ end
get_sim_var_dict(diagnostics_folder_path)
Return a dictionary mapping short names to `OutputVar` containing preprocessed
simulation data.
simulation data. This is used by the function `compute_leaderboard`.
To add a variable for the leaderboard, add a key-value pair to the dictionary
`sim_var_dict` whose key is the short name of the variable and the value is an
Expand Down Expand Up @@ -108,7 +110,7 @@ end
get_obs_var_dict()
Return a dictionary mapping short names to `OutputVar` containing preprocessed
observational data.
observational data. This is used by the function `compute_leaderboard`.
To add a variable for the leaderboard, add a key-value pair to the dictionary
`obs_var_dict` whose key is the short name of the variable and the value is an
Expand Down Expand Up @@ -159,11 +161,11 @@ end
get_rmse_var_dict()
Return a dictionary mapping short names to `RMSEVariable` containing information about
RMSEs of models for the short name of the variable.
RMSEs of models for the short name of the variable. This is used by the function
`compute_leaderboard`.
"""
function get_rmse_var_dict()
# Load data into RMSEVariables
rmse_var_names = ["pr", "rsut", "rlut"]
rmse_var_pr = ClimaAnalysis.read_rmses(
joinpath(@clima_artifact("cmip_model_rmse"), "pr_rmse_amip_pr_amip_5yr.csv"),
"pr",
Expand Down Expand Up @@ -191,6 +193,151 @@ function get_rmse_var_dict()
ClimaAnalysis.add_unit!(rmse_var_rlut, "CliMA", "W m^-2")

# Store the rmse vars in a dictionary
rmse_var_dict = Dict("pr" => rmse_var_pr, "rsut" => rmse_var_rsut, "rlut" => rmse_var_rlut)
rmse_var_dict = OrderedDict("pr" => rmse_var_pr, "rsut" => rmse_var_rsut, "rlut" => rmse_var_rlut)
return rmse_var_dict
end

"""
get_sim_var_in_pfull_dict(diagnostics_folder_path)
Return a dictionary mapping short names to `OutputVar` containing preprocessed
simulation data in pressure space. This is used by `compute_pfull_leaderboard`.
To add a variable for the leaderboard, add a key-value pair to the dictionary
`sim_var_dict` whose key is the short name of the variable and the value is an
anonymous function that returns a `OutputVar`. For each variable, any
preprocessing should be done in the corresponding anonymous function which
includes unit conversion and shifting the dates.
The variable should have only four dimensions: latitude, longitude, time, and
pressure. The units of pressure should be in hPa.
"""
function get_sim_var_in_pfull_dict(diagnostics_folder_path)
simdir = ClimaAnalysis.SimDir(diagnostics_folder_path)
sim_var_pfull_dict = Dict{String, Any}()

short_names = ["ta", "hur", "hus"]
for short_name in short_names
sim_var_pfull_dict[short_name] =
() -> begin
sim_var = get(simdir, short_name = short_name)
pfull_var = get(simdir, short_name = "pfull")

(ClimaAnalysis.units(sim_var) == "") && (sim_var = ClimaAnalysis.set_units(sim_var, "unitless"))
(ClimaAnalysis.units(sim_var) == "kg kg^-1") &&
(sim_var = ClimaAnalysis.set_units(sim_var, "unitless"))

sim_in_pfull_var = ClimaAnalysis.Atmos.to_pressure_coordinates(sim_var, pfull_var)
sim_in_pfull_var = ClimaAnalysis.shift_to_start_of_previous_month(sim_in_pfull_var)
sim_in_pfull_var = ClimaAnalysis.convert_dim_units(
sim_in_pfull_var,
"pfull",
"hPa";
conversion_function = x -> 0.01 * x,
)
return sim_in_pfull_var
end
end
return sim_var_pfull_dict
end

"""
get_obs_var_in_pfull_dict()
Return a dictionary mapping short names to `OutputVar` containing preprocessed
observational data in pressure coordinates. This is used by
`compute_pfull_leaderboard`.
To add a variable for the leaderboard, add a key-value pair to the dictionary
`obs_var_dict` whose key is the short name of the variable and the value is an anonymous
function that returns a `OutputVar`. The function must take in a start date
which is used to align the times in the observational data to match the
simulation data. The short name must be the same as in `sim_var_pfull_dict` in
the function `get_sim_var_in_pfull_dict`. Any preprocessing is done in the
function which includes unit conversion and shifting the dates.
The variable should have only four dimensions: latitude, longitude, time, and
pressure. The units of pressure should be in hPa.
"""
function get_obs_var_in_pfull_dict()
artifact_path = joinpath(
@clima_artifact("era5_monthly_averages_pressure_levels_1979_2024"),
"era5_monthly_averages_pressure_levels_197901-202410.nc",
)
short_names_pairs = [("ta", "t"), ("hus", "q")]
obs_var_dict = Dict{String, Any}()
for (short_name, era5_short_name) in short_names_pairs
obs_var_dict[short_name] =
(start_date) -> begin
obs_var = ClimaAnalysis.OutputVar(
artifact_path,
era5_short_name,
new_start_date = start_date,
shift_by = Dates.firstdayofmonth,
)
(ClimaAnalysis.units(obs_var) == "kg kg**-1") &&
(obs_var = ClimaAnalysis.set_units(obs_var, "unitless"))
obs_var = ClimaAnalysis.Var.convert_dim_units(
obs_var,
"pressure_level",
"hPa";
conversion_function = x -> 0.01 * x,
)
return obs_var
end
end

obs_var_dict["hur"] =
(start_date) -> begin
obs_var = ClimaAnalysis.OutputVar(
artifact_path,
"r",
new_start_date = start_date,
shift_by = Dates.firstdayofmonth,
)
obs_var = ClimaAnalysis.Var.convert_dim_units(
obs_var,
"pressure_level",
"hPa";
conversion_function = x -> 0.01 * x,
)
# Convert from percentages (e.g. 120%) to decimal (1.20)
obs_var = ClimaAnalysis.Var.convert_units(obs_var, "unitless", conversion_function = x -> 0.01 * x)
return obs_var
end
return obs_var_dict
end

"""
get_compare_vars_biases_plot_extrema_pfull()
Return a dictionary mapping short names to ranges for the bias plots. This is
used by the function `compute_pfull_leaderboard`.
To add a variable to the leaderboard, add a key-value pair to the dictionary
`compare_vars_biases_plot_extrema` whose key is a short name key is the same
short name in `sim_var_pfull_dict` in the function `get_sim_var_pfull_dict` and
the value is a tuple, where the first element is the lower bound and the last
element is the upper bound for the bias plots.
"""
function get_compare_vars_biases_plot_extrema_pfull()
compare_vars_biases_plot_extrema = Dict("ta" => (-5.0, 5.0), "hur" => (-0.4, 0.4), "hus" => (-0.0015, 0.0015))
return compare_vars_biases_plot_extrema
end

"""
get_compare_vars_biases_heatmap_extrema_pfull()
Return a dictionary mapping short names to ranges for the heatmaps. This is
used by the function `compute_pfull_leaderboard`.
To add a variable to the leaderboard, add a key-value pair to the dictionary
`compare_vars_biases_heatmap_extrema` whose key is a short name key is the same
short name in `sim_var_pfull_dict` in the function `get_sim_var_pfull_dict` and
the value is a tuple, where the first element is the lower bound and the last
element is the upper bound for the bias plots.
"""
function get_compare_vars_biases_heatmap_extrema_pfull()
compare_vars_biases_heatmap_extrema = Dict("ta" => (-10.0, 10.0), "hur" => (-0.4, 0.4), "hus" => (-0.001, 0.001))
return compare_vars_biases_heatmap_extrema
end
Loading

0 comments on commit 1cd54c5

Please sign in to comment.