Skip to content

DanielZuleta/fgeo.habitat

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Analize soils and tree-habitat associations

lifecycle Travis build status Coverage status CRAN status

Installation

Install the pre-release version of fgeo.habitat:

# install.packages("devtools")
devtools::install_github("forestgeo/fgeo.habitat@pre-release")

Or install the development version of fgeo.habitat:

# install.packages("devtools")
devtools::install_github("forestgeo/fgeo.habitat")

Or install all fgeo packages in one step.

For details on how to install packages from GitHub, see this article.

Example

library(fgeo.habitat)
library(fgeo.data)
library(fgeo.tool)
library(dplyr)

Species-habitat associations

# Pick alive trees, of 10 mm or more
census <- filter(luquillo_tree6_random, status == "A", dbh >= 10)

# Pick sufficiently abundant species
pick <- filter(add_count(census, sp), n > 50)
species <- unique(pick$sp)

# Use your habitat data or create it from elevation data
habitat <- fgeo.tool::fgeo_habitat(luquillo_elevation, gridsize = 20, n = 4)

# A list or matrices
tt_lst <- tt_test(census, species, habitat)
#> Using `plotdim = c(320, 500)`. To change this value see `?tt_test()`.
#> Using `gridsize = 20`. To change this value see `?tt_test()`.
tt_lst
#> [[1]]
#>        N.Hab.1 Gr.Hab.1 Ls.Hab.1 Eq.Hab.1 Rep.Agg.Neut.1 Obs.Quantile.1
#> CASARB      29     1418      179        3              0        0.88625
#>        N.Hab.2 Gr.Hab.2 Ls.Hab.2 Eq.Hab.2 Rep.Agg.Neut.2 Obs.Quantile.2
#> CASARB      20      416     1182        2              0           0.26
#>        N.Hab.3 Gr.Hab.3 Ls.Hab.3 Eq.Hab.3 Rep.Agg.Neut.3 Obs.Quantile.3
#> CASARB      12      804      790        6              0         0.5025
#>        N.Hab.4 Gr.Hab.4 Ls.Hab.4 Eq.Hab.4 Rep.Agg.Neut.4 Obs.Quantile.4
#> CASARB       5      554     1040        6              0        0.34625
#> 
#> [[2]]
#>        N.Hab.1 Gr.Hab.1 Ls.Hab.1 Eq.Hab.1 Rep.Agg.Neut.1 Obs.Quantile.1
#> PREMON      91     1483      116        1              0       0.926875
#>        N.Hab.2 Gr.Hab.2 Ls.Hab.2 Eq.Hab.2 Rep.Agg.Neut.2 Obs.Quantile.2
#> PREMON      89     1142      455        3              0        0.71375
#>        N.Hab.3 Gr.Hab.3 Ls.Hab.3 Eq.Hab.3 Rep.Agg.Neut.3 Obs.Quantile.3
#> PREMON      40      409     1189        2              0       0.255625
#>        N.Hab.4 Gr.Hab.4 Ls.Hab.4 Eq.Hab.4 Rep.Agg.Neut.4 Obs.Quantile.4
#> PREMON      14       76     1523        1              0         0.0475
#> 
#> [[3]]
#>        N.Hab.1 Gr.Hab.1 Ls.Hab.1 Eq.Hab.1 Rep.Agg.Neut.1 Obs.Quantile.1
#> SLOBER      18      387     1212        1              0       0.241875
#>        N.Hab.2 Gr.Hab.2 Ls.Hab.2 Eq.Hab.2 Rep.Agg.Neut.2 Obs.Quantile.2
#> SLOBER      24      810      788        2              0        0.50625
#>        N.Hab.3 Gr.Hab.3 Ls.Hab.3 Eq.Hab.3 Rep.Agg.Neut.3 Obs.Quantile.3
#> SLOBER      17     1182      414        4              0        0.73875
#>        N.Hab.4 Gr.Hab.4 Ls.Hab.4 Eq.Hab.4 Rep.Agg.Neut.4 Obs.Quantile.4
#> SLOBER       7      912      680        8              0           0.57

# A simple summary to help you interpret the results
summary(tt_lst)
#>   Species Habitat_1 Habitat_2 Habitat_3 Habitat_4
#> 1  CASARB   neutral   neutral   neutral   neutral
#> 2  PREMON   neutral   neutral   neutral   neutral
#> 3  SLOBER   neutral   neutral   neutral   neutral

# A combined matrix
Reduce(rbind, tt_lst)
#>        N.Hab.1 Gr.Hab.1 Ls.Hab.1 Eq.Hab.1 Rep.Agg.Neut.1 Obs.Quantile.1
#> CASARB      29     1418      179        3              0       0.886250
#> PREMON      91     1483      116        1              0       0.926875
#> SLOBER      18      387     1212        1              0       0.241875
#>        N.Hab.2 Gr.Hab.2 Ls.Hab.2 Eq.Hab.2 Rep.Agg.Neut.2 Obs.Quantile.2
#> CASARB      20      416     1182        2              0        0.26000
#> PREMON      89     1142      455        3              0        0.71375
#> SLOBER      24      810      788        2              0        0.50625
#>        N.Hab.3 Gr.Hab.3 Ls.Hab.3 Eq.Hab.3 Rep.Agg.Neut.3 Obs.Quantile.3
#> CASARB      12      804      790        6              0       0.502500
#> PREMON      40      409     1189        2              0       0.255625
#> SLOBER      17     1182      414        4              0       0.738750
#>        N.Hab.4 Gr.Hab.4 Ls.Hab.4 Eq.Hab.4 Rep.Agg.Neut.4 Obs.Quantile.4
#> CASARB       5      554     1040        6              0        0.34625
#> PREMON      14       76     1523        1              0        0.04750
#> SLOBER       7      912      680        8              0        0.57000

# A dataframe
dfm <- to_df(tt_lst)

# Using dplyr to summarize results by species and distribution
summarize(group_by(dfm, sp, distribution), n = sum(stem_count))
#> # A tibble: 3 x 3
#> # Groups:   sp [?]
#>   sp     distribution     n
#>   <chr>  <chr>        <dbl>
#> 1 CASARB neutral         66
#> 2 PREMON neutral        234
#> 3 SLOBER neutral         66

Krige soil data

Using custom parameters and multiple soil variable.

params <- list(
  model = "circular", range = 100, nugget = 1000, sill = 46000, kappa = 0.5
)

vars <- c("c", "p")
custom <- krig(soil_fake, vars, params = params, quiet = TRUE)
#> Gessing: plotdim = c(1000, 460)

# Showing only the first item of the resulting output
to_df(custom)
#> # A tibble: 2,300 x 4
#>    var       x     y     z
#>    <chr> <dbl> <dbl> <dbl>
#>  1 c        10    10  2.29
#>  2 c        30    10  2.31
#>  3 c        50    10  2.22
#>  4 c        70    10  2.04
#>  5 c        90    10  1.79
#>  6 c       110    10  1.54
#>  7 c       130    10  1.55
#>  8 c       150    10  1.64
#>  9 c       170    10  1.77
#> 10 c       190    10  1.89
#> # ... with 2,290 more rows

Using automated parameters.

result <- krig(soil_fake, var = "c", quiet = TRUE)
#> Gessing: plotdim = c(1000, 460)
summary(result)
#> var: c 
#> df
#> Classes 'tbl_df', 'tbl' and 'data.frame':    1150 obs. of  3 variables:
#>  $ x: num  10 30 50 70 90 110 130 150 170 190 ...
#>  $ y: num  10 10 10 10 10 10 10 10 10 10 ...
#>  $ z: num  2.13 2.12 2.1 2.09 2.07 ...
#> 
#> df.poly
#> Classes 'tbl_df', 'tbl' and 'data.frame':    1150 obs. of  3 variables:
#>  $ gx: num  10 30 50 70 90 110 130 150 170 190 ...
#>  $ gy: num  10 10 10 10 10 10 10 10 10 10 ...
#>  $ z : num  2.13 2.12 2.1 2.09 2.07 ...
#> 
#> lambda
#> 'numeric'
#>  num 1
#> 
#> vg
#> 'variogram'
#> List of 20
#>  $ u               : num [1:9] 60.9 86.5 103 122.7 146.1 ...
#>  $ v               : num [1:9] 0.284 0.422 0.882 0.543 0.211 ...
#>  $ n               : num [1:9] 7 9 10 10 18 19 36 34 38
#>  $ sd              : num [1:9] 0.414 0.48 0.633 0.501 0.405 ...
#>  $ bins.lim        : num [1:31] 1.00e-12 2.00 2.38 2.84 3.38 ...
#>  $ ind.bin         : logi [1:30] FALSE FALSE FALSE FALSE FALSE FALSE ...
#>  $ var.mark        : num 0.317
#>  $ beta.ols        : num 1.36e-09
#>  $ output.type     : chr "bin"
#>  $ max.dist        : num 320
#>  $ estimator.type  : chr "classical"
#>  $ n.data          : int 30
#>  $ lambda          : num 1
#>  $ trend           : chr "cte"
#>  $ pairs.min       : num 5
#>  $ nugget.tolerance: num 1e-12
#>  $ direction       : chr "omnidirectional"
#>  $ tolerance       : chr "none"
#>  $ uvec            : num [1:30] 1 2.19 2.61 3.11 3.7 ...
#>  $ call            : language variog(geodata = geodata, breaks = breaks, trend = trend, pairs.min = 5)
#> 
#> vm
#> 'variomodel', variofit'
#> List of 17
#>  $ nugget               : num 0.352
#>  $ cov.pars             : num [1:2] 0 160
#>  $ cov.model            : chr "exponential"
#>  $ kappa                : num 0.5
#>  $ value                : num 4.64
#>  $ trend                : chr "cte"
#>  $ beta.ols             : num 1.36e-09
#>  $ practicalRange       : num 480
#>  $ max.dist             : num 320
#>  $ minimisation.function: chr "optim"
#>  $ weights              : chr "npairs"
#>  $ method               : chr "WLS"
#>  $ fix.nugget           : logi FALSE
#>  $ fix.kappa            : logi TRUE
#>  $ lambda               : num 1
#>  $ message              : chr "optim convergence code: 0"
#>  $ call                 : language variofit(vario = vg, ini.cov.pars = c(initialVal, startRange), cov.model = varModels[i],      nugget = initialVal)

Get started with fgeo

Information

Acknowledgements

Thanks to all partners of ForestGEO who shared their ideas and code. Functions’ authors include Graham Zemunik, Sabrina Russo, Daniel Zuleta, Matteo Detto, Kyle Harms, Gabriel Arellano.

Packages

No packages published

Languages

  • R 100.0%