Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Data] Fix nested list support #71

Merged
merged 1 commit into from
Aug 3, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions hybridbackend/tensorflow/data/common/arrow.cc
Original file line number Diff line number Diff line change
Expand Up @@ -195,6 +195,12 @@ class RaggedTensorBuilder : public ::arrow::ArrayVisitor {
if (!st.ok()) {
return st;
}

// Follow RaggedTensor-style ordering: V, Sn, Sn-1, ..., S0
if (ragged_tensor_.size() > 1) {
std::reverse(std::next(ragged_tensor_.begin()), ragged_tensor_.end());
}

output_tensors->insert(output_tensors->end(), ragged_tensor_.begin(),
ragged_tensor_.end());
return ::arrow::Status::OK();
Expand Down
10 changes: 10 additions & 0 deletions hybridbackend/tensorflow/data/dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,6 +163,16 @@ def __new__(cls, values, nested_row_splits=None):
def __repr__(self):
return f'{{{self.values}, splits={self.nested_row_splits}}}'

def to_list(self):
result = self.values.tolist()
for rank in reversed(range(len(self.nested_row_splits))):
row_splits = self.nested_row_splits[rank]
result = [
result[row_splits[i]:row_splits[i + 1]]
for i in range(len(row_splits) - 1)
]
return result

def to_sparse(self, name=None):
if len(self.nested_row_splits) == 0:
return self.values
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# Copyright 2021 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================

r'''Parquet batch dataset nested ragged tensors test.
'''

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import tempfile
import unittest

import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import tensorflow as tf

import hybridbackend.common.test as hbtest
import hybridbackend.tensorflow as hb


# pylint: disable=missing-docstring
class ParquetDatasetRaggedNestedTest(unittest.TestCase):
def setUp(self): # pylint: disable=invalid-name
os.environ['CUDA_VISIBLE_DEVICES'] = ''
self._workspace = tempfile.mkdtemp()
self._filename = os.path.join(
self._workspace, 'ragged_test_pyarrow.parquet')
self._data = pa.array(
[[[1], [2, 3]], [[4], [5]]], pa.list_(pa.list_(pa.int64())))
table = pa.Table.from_arrays([self._data], ['A'])
pq.write_table(table, self._filename, compression='ZSTD')

def tearDown(self): # pylint: disable=invalid-name
os.remove(self._filename)
del os.environ['CUDA_VISIBLE_DEVICES']

def test_read(self):
with tf.Graph().as_default() as graph:
ds = hb.data.ParquetDataset(
[self._filename],
batch_size=2)
ds = ds.prefetch(4)
batch = hb.data.make_one_shot_iterator(ds).get_next()

with tf.Session(graph=graph) as sess:
actual = sess.run(batch)['A'].to_list()
expected = self._data.to_pylist()
np.testing.assert_equal(actual, expected)

def test_apply_to_sparse(self):
with tf.Graph().as_default() as graph:
ds = hb.data.ParquetDataset(
[self._filename],
batch_size=2)
ds = ds.apply(hb.data.to_sparse())
batch = hb.data.make_one_shot_iterator(ds).get_next()['A']
baseline = tf.ragged.constant(self._data.to_pylist()).to_sparse()

with tf.Session(graph=graph) as sess:
actual, expected = sess.run([batch, baseline])
np.testing.assert_equal(actual.indices, expected.indices)
np.testing.assert_equal(actual.values, expected.values)
np.testing.assert_equal(actual.dense_shape, expected.dense_shape)


if __name__ == '__main__':
hbtest.main(f'{__file__}.xml')