Skip to content

Urai AE, de Gee JW, Tsetsos K, Donner TH (2019) Choice history biases subsequent evidence accumulation. eLife

License

Notifications You must be signed in to change notification settings

DonnerLab/2019_Urai_choice-history-ddm

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Code and data for

Urai AE, de Gee JW, Tsetsos K, Donner TH (2019) Choice history biases subsequent evidence accumulation. eLife, 8:e46331.

Behavioral data and model fits are available at https://doi.org/10.6084/m9.figshare.7268558 under a CC-BY 4.0 license.

To fit the models, install the HDDM package (http://ski.clps.brown.edu/hddm_docs/index.html). Then run the HDDM models using b1_HDDM_run.py (the models are specified in hddm_models.py). Easiest is to use a batch job submission system, and do e.g. python b1_HDDM_run.py -r 1 -d $d -v $v -i $i -s $s where -d = 0-6 (datasets), -v = 0-11 (versions of the model), -i = 0-30 (traces, can be changed to whatever the number of cores on a node) and -i = 5.000, the number of samples per trace.

To reproduce all main figures, see plot_all.m which has the overview of the scripts that are called to generate each figure.

The extended_models folder contains Matlab code to fit the models in Figure 6.

The simulations folder contains Python code to generate Supplementary Figure 8.

For questions, @AnneEUrai / [email protected].

About

Urai AE, de Gee JW, Tsetsos K, Donner TH (2019) Choice history biases subsequent evidence accumulation. eLife

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • MATLAB 71.0%
  • Python 22.7%
  • Jupyter Notebook 4.7%
  • Other 1.6%