Trust your Neighbours: kNN-Averaging to Reduce Noise in Search-Based Approaches, Stefan Klikovits, Cédric Ho Thanh, Ahmet Cetinkaya, and Paolo Arcaini.
make_benchmark.py
: creates nmoo benchmark for synthetic problems. Use with:make_benchmark
,:make_ar_benchmark
or:make_gpss_benchmark
utils.py
: helper functions to generate synthetic pymoo problems.hv_refpoints.csv
: the reference points for the hypervolume calculation of the synthetic problemsmake_casestudy.py
: creates nmoo benchmark for casestudy problems. Use with:make_benchmark
or:make_ar_benchmark
src/
: source code:src/c_region_simulator_problem/
: pymoo wrapper for thec_region_simulator
problem; note thatsrc/c_region_simulator_problem/c_region_simulator_with_pipe
points tosubmodules/controllerTesting/controller/CRegionSimulatorWithPipe/c_region_simulator_with_pipe
which is a binary you may need to recompile depending on your OS;src/pendulum_cart_problem/
: pymoo wrapper for thependulum_cart
problem;
submodules/controllerTesting/
: dependency forc_region_simulator
andpendulum_cart
;
Please refer to the nmoo documentation for more info.
python -m nmoo run make_benchmark:make_benchmark
You might also refer to
python -m nmoo --help
python -m nmoo run --help
for more information.