Skip to content

Hero2323/Flooding-Detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Flooding Detection:

Classification:

Features used for Classical Models:

  1. LBP Features: For the local binary patterns, we used the ‘uniform’ method which is grayscale invariant and rotation invariant. We used a radius of 1 (i.e. we calculated the LBP for each pixel using only the 8-neighbourhood).
  2. LBP Histograms: We flatten the LBP features and calculate the histogram on it using 10 bins.

Classical Models:

1. K-Means: (K=2, method='uniform')

The LBP histograms were used as the feature used to train the model.

Precision (UA) Recall (PA) F1-Score Accuracy OE CE
Flooded 0.70 0.86 0.77 - 0.14 0.30
Non-Flooded 0.81 0.64 0.72 - 0.36 0.19
Macro Avg 0.76 0.75 0.74 0.75 0.25 0.24

2. SVM:

It used the LBP features from the training set as training data.

  • Poly kernel, C=3
Precision (UA) Recall (PA) F1-Score Accuracy OE CE
Flooded 0.53 0.81 0.64 - 0.19 0.47
Non-Flooded 0.59 0.28 0.38 - 0.72 0.41
Macro Avg 0.56 0.54 0.51 0.54 0.46 0.44
  • RBF kernel, C=3
Precision (UA) Recall (PA) F1-Score Accuracy OE CE
Flooded 0.80 0.59 0.68 - 0.41 0.20
Non-Flooded 0.68 0.86 0.76 - 0.14 0.32
Macro Avg 0.74 0.72 0.72 0.72 0.28 0.26
  • RBF, C=3, gamma=0.05
Precision (UA) Recall (PA) F1-Score Accuracy OE CE
Flooded 0.74 0.84 0.79 - 0.16 0.26
Non-Flooded 0.82 0.71 0.76 - 0.29 0.18
Macro Avg 0.78 0.78 0.77 0.775 0.22 0.22

DL Models:

1. RegNet16:

Precision (UA) Recall (PA) F1-Score Accuracy OE CE
Flooded 1.00 0.97 0.99 - 0.03 0.00
Non-Flooded 0.97 1.00 0.99 - 0.00 0.03
Macro Avg 0.99 0.99 0.99 0.985 0.01 0.01

2. ResNet18:

Precision (UA) Recall (PA) F1-Score Accuracy OE CE
Flooded 0.97 0.99 0.98 - 0.01 0.03
Non-Flooded 0.99 0.97 0.98 - 0.03 0.01
Macro Avg 0.98 0.98 0.98 0.978 0.02 0.02

3. MobileNetV2:

Precision (UA) Recall (PA) F1-Score Accuracy OE CE
Flooded 0.97 1.00 0.99 - 0.00 0.03
Non-Flooded 1.00 0.97 0.99 - 0.03 0.00
Macro Avg 0.99 0.99 0.99 0.985 0.01 0.01

Flooded Pixel Segmentation:

Supervised:

  1. U-Net.

Unsupervised:

  1. ISODATA.
  2. K-Means.

Segemenation :

Collaborators :

Abdelrahman Jamal
Abdelrahman Jamal
Iten-No-404
Iten Elhak
radwaahmed2132000
Radwa Ahmed
abdullahalshawafi
Abdullah Alshawafi

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •