Skip to content

Commit

Permalink
Merge pull request #267 from bbahiam/linear
Browse files Browse the repository at this point in the history
Improve docs and code of newmark_ss
  • Loading branch information
sduess authored Nov 17, 2023
2 parents 4b5a520 + 893cbce commit e0ae0de
Show file tree
Hide file tree
Showing 4 changed files with 169 additions and 90 deletions.
10 changes: 8 additions & 2 deletions docs/source/content/installation.md
Original file line number Diff line number Diff line change
Expand Up @@ -207,6 +207,10 @@ to your taste.

## Using SHARPy from a Docker container

> **Tip** To install the Python environment, miniconda needs approximatelly 16GB of
> memory. It is recommended to have at least that amount available for the
> container in which you are building SHARPy.

Docker containers are similar to lightweight virtual machines. The SHARPy container
distributed through [Docker Hub](https://hub.docker.com/) is a CentOS 8
machine with the libraries compiled with `gfortran` and `g++` and an
Expand Down Expand Up @@ -268,14 +272,16 @@ docker cp sharpy:/my_file.txt my_file.txt # copy from container to host
```
The `sharpy:` part is the `--name` argument you wrote in the `docker run` command.
**Enjoy!**
## Testing with Docker
You can run the test suite once inside the container as:
```
cd sharpy_dir
python -m unittest
```
**Enjoy!**
## Running SHARPy
Expand Down
2 changes: 1 addition & 1 deletion docs/source/includes/linear/src/lingebm/newmark_ss.rst
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
newmark_ss
----------

.. automodule:: sharpy.linear.src.lingebm.newmark_ss
.. autofunction:: sharpy.linear.src.lingebm.newmark_ss
245 changes: 159 additions & 86 deletions sharpy/linear/src/lingebm.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,7 @@ def __init__(self, tsinfo, structure=None, custom_settings=dict()):
# Store structure at linearisation and linearisation conditions
self.structure = structure
self.tsstruct0 = tsinfo
self.Minv = None
self.Minv = None # Not used anymore since M is factorized inside newmark_ss

self.scaled_reference_matrices = dict() # keep reference values prior to time scaling

Expand Down Expand Up @@ -925,16 +925,10 @@ def assemble(self, Nmodes=None):
if self.proj_modes == 'undamped':
Phi = self.U[:, :Nmodes]

if self.Ccut is None:
# Ccut = np.zeros((Nmodes, Nmodes))
Ccut = np.dot(Phi.T, np.dot(self.Cstr, Phi))
else:
Ccut = np.dot(Phi.T, np.dot(self.Cstr, Phi))

Ass, Bss, Css, Dss = newmark_ss(
np.linalg.inv(np.dot(self.U[:, :Nmodes].T, np.dot(self.Mstr, self.U[:, :Nmodes]))),
Ccut,
np.dot(self.U[:, :Nmodes].T, np.dot(self.Kstr, self.U[:, :Nmodes])),
Phi.T @ self.Mstr @ Phi,
Phi.T @ self.Cstr @ Phi,
Phi.T @ self.Kstr @ Phi,
self.dt,
self.newmark_damp)

Expand Down Expand Up @@ -983,10 +977,8 @@ def assemble(self, Nmodes=None):


else: # Full system
self.Minv = np.linalg.inv(self.Mstr)

Ass, Bss, Css, Dss = newmark_ss(
self.Minv, self.Cstr, self.Kstr,
self.Mstr, self.Cstr, self.Kstr,
self.dt, self.newmark_damp)
self.Kin = None
self.Kout = None
Expand Down Expand Up @@ -1354,113 +1346,181 @@ def cont2disc(self, dt=None):
self.dlti = True


def newmark_ss(Minv, C, K, dt, num_damp=1e-4):
def newmark_ss(M, C, K, dt, num_damp=1e-4, M_is_SPD=False):
r"""
Produces a discrete-time state-space model of the structural equations
Produces a discrete-time state-space model of the 2nd order ordinary differential equation (ODE) given by:
.. math::
\mathbf{M}\mathbf{\ddot{q}} + \mathbf{C}\mathbf{\dot{q}} + \mathbf{K}\mathbf{q} = \mathbf{f(t)}
\mathbf{\ddot{x}} &= \mathbf{M}^{-1}( -\mathbf{C}\,\mathbf{\dot{x}}-\mathbf{K}\,\mathbf{x}+\mathbf{F} ) \\
\mathbf{y} &= \mathbf{x}
based on the Newmark-:math:`\beta` integration scheme. The output state-space model
has form:
This ODE is discretized based on the Newmark-:math:`\beta` integration scheme.
The output state-space model has the form:
.. math::
\mathbf{x}_{n+1} &= \mathbf{A_{ss}}\mathbf{x}_n + \mathbf{B_{ss}}\mathbf{f}_n \\
\mathbf{y}_n &= \mathbf{C_{ss}}\mathbf{x}_n + \mathbf{D_{ss}}\mathbf{f}_n
\mathbf{X}_{n+1} &= \mathbf{A}\,\mathbf{X}_n + \mathbf{B}\,\mathbf{F}_n \\
\mathbf{Y} &= \mathbf{C}\,\mathbf{X} + \mathbf{D}\,\mathbf{F}
with :math:`\mathbf{X} = [\mathbf{x}, \mathbf{\dot{x}}]^T`
where :math:`\mathbf{y} = \begin{Bmatrix} \mathbf{q} \\ \mathbf{\dot{q}} \end{Bmatrix}`
Note that as the state-space representation only requires the input force
:math:`\mathbf{F}` to be evaluated at time-step :math:`n`,the :math:`\mathbf{C}` and :math:`\mathbf{D}` matrices
are, in general, fully populated.
:math:`\mathbf{f}` to be evaluated at time-step :math:`n`, thus the pass-through matrix
:math:`\mathbf{D_{ss}}` is not zero.
The Newmark-:math:`\beta` integration scheme is carried out following the modifications presented by
Geradin [1] that render it unconditionally stable. The displacement and velocities are estimated as:
This function retuns a tuple with the discrete state-space matrices :math:`(\mathbf{A_{ss},B_{ss},C_{ss},D_{ss}})`.
.. math::
x_{n+1} &= x_n + \Delta t \dot{x}_n + \left(\frac{1}{2}-\theta_2\right)\Delta t^2 \ddot{x}_n + \theta_2\Delta t
\ddot{x}_{n+1} \\
\dot{x}_{n+1} &= \dot{x}_n + (1-\theta_1)\Delta t \ddot{x}_n + \theta_1\Delta t \ddot{x}_{n+1}
The stencil is unconditionally stable if the tuning parameters :math:`\theta_1` and :math:`\theta_2` are chosen as:
Theory
------
.. math::
\theta_1 &= \frac{1}{2} + \alpha \\
\theta_2 &= \frac{1}{4} \left(\theta_1 + \frac{1}{2}\right)^2 \\
\theta_2 &= \frac{5}{80} + \frac{1}{4} (\theta_1 + \theta_1^2) \text{TBC SOURCE}
The following steps describe how to apply the Newmark-:math:`\beta` scheme
to the ODE in order to generate the discrete time-state space-model. It
folows the development of [1].
where :math:`\alpha>0` accounts for small positive algorithmic damping.
.. admonition:: Notation
The following steps describe how to apply the Newmark-beta scheme to a state-space formulation. The original idea
is based on [1].
Bold upper case letters represent matrices, bold lower case letters
represent vectors. Non-bold symbols are scalars. Curly brackets
indicate (block) vectors and square brackets indicate (block) matrices.
The equation of a second order system dynamics reads:
Evaluating the ODE to the time steps :math:`t_n` and :math:`t_{n+1}` and
isolating the acceleration term:
.. math::
M\mathbf{\ddot q} + C\mathbf{\dot q} + K\mathbf{q} = F
\mathbf{\ddot q}_{n} &= - \mathbf{M}^{-1}\mathbf{C}\mathbf{\dot{q}}_{n}
- \mathbf{M}^{-1}\mathbf{K}\mathbf{q}_{n}
+ \mathbf{M}^{-1}\mathbf{f}_{n} \\
\mathbf{\ddot q}_{n+1} &= - \mathbf{M}^{-1}\mathbf{C}\mathbf{\dot{q}}_{n+1}
- \mathbf{M}^{-1}\mathbf{K}\mathbf{q}_{n+1}
+ \mathbf{M}^{-1}\mathbf{f}_{n+1} \\
Applying that equation to the time steps :math:`n` and :math:`n+1`, rearranging terms and multiplying by
:math:`M^{-1}`:
.. math::
\mathbf{\ddot q}_{n} = - M^{-1}C\mathbf{\dot q}_{n} - M^{-1}K\mathbf{q}_{n} + M^{-1}F_{n} \\
\mathbf{\ddot q}_{n+1} = - M^{-1}C\mathbf{\dot q}_{n+1} - M^{-1}K\mathbf{q}_{n+1} + M^{-1}F_{n+1}
The relations of the Newmark-beta scheme are:
The update equations of the Newmark-beta scheme are [1]:
.. math::
\mathbf{q}_{n+1} &= \mathbf{q}_n + \mathbf{\dot q}_n\Delta t +
(\frac{1}{2}-\beta)\mathbf{\ddot q}_n \Delta t^2 + \beta \mathbf{\ddot q}_{n+1} \Delta t^2 + O(\Delta t^3) \\
(1/2-\beta)\mathbf{\ddot q}_n \Delta t^2 + \beta \mathbf{\ddot q}_{n+1} \Delta t^2 + O(\Delta t^3) \\
\mathbf{\dot q}_{n+1} &= \mathbf{\dot q}_n + (1-\gamma)\mathbf{\ddot q}_n \Delta t +
\gamma \mathbf{\ddot q}_{n+1} \Delta t + O(\Delta t^3)
Substituting the former relation onto the later ones, rearranging terms, and writing it in state-space form:
where :math:`\Delta t = t_{n+1} - t_n`.
The stencil is unconditionally stable if the tuning parameters
:math:`\gamma` and :math:`\beta` are chosen as:
.. math::
\begin{bmatrix} I + M^{-1}K \Delta t^2\beta \quad \Delta t^2\beta M^{-1}C \\ (\gamma \Delta t M^{-1}K)
\quad (I + \gamma \Delta t M^{-1}C) \end{bmatrix} \begin{Bmatrix} \mathbf{\dot q}_{n+1} \\
\mathbf{\ddot q}_{n+1} \end{Bmatrix} =
\begin{bmatrix} (I - \Delta t^2(1/2-\beta)M^{-1}K \quad (\Delta t - \Delta t^2(1/2-\beta)M^{-1}C \\
(-(1-\gamma)\Delta t M^{-1}K \quad (I - (1-\gamma)\Delta tM^{-1}C \end{bmatrix}
\begin{Bmatrix} \mathbf{q}_{n} \\ \mathbf{\dot q}_{n} \end{Bmatrix} +
\begin{Bmatrix} (\Delta t^2(1/2-\beta) \\ (1-\gamma)\Delta t \end{Bmatrix} M^{-1}F_n+
\begin{Bmatrix} (\Delta t^2\beta) \\ (\gamma \Delta t) \end{Bmatrix}M^{-1}F_{n+1}
\gamma &= \frac{1}{2} + \alpha \\
\beta &= \frac{(1+\alpha)^2}{4}
= \frac{(1/2+\gamma)^2}{4}
= \frac{1}{16} + \frac{1}{4}(\gamma + \gamma^2)
To understand SHARPy code, it is convenient to apply the following change of notation:
where :math:`\alpha>0` accounts for small positive algorithmic damping (:math:`\alpha` is ``num_damp`` in the code).
Substituting the former relations onto the later ones, rearranging terms, and writing it in state-space form:
.. math::
\mathbf{A_{ss1}} \begin{Bmatrix} \mathbf{q}_{n+1} \\ \mathbf{\dot q}_{n+1} \end{Bmatrix}
=
\mathbf{A_{ss0}} \begin{Bmatrix} \mathbf{q}_{n} \\ \mathbf{\dot q}_{n} \end{Bmatrix} +
\mathbf{B_{ss0}} \mathbf{f}_n +
\mathbf{B_{ss1}} \mathbf{f}_{n+1}
where
.. math::
\mathbf{A_{ss1}} &=
\begin{bmatrix}
\mathbf{I} + \beta\Delta t^2 \mathbf{M}^{-1}\mathbf{K}
& \beta\Delta t^2 \mathbf{M}^{-1}\mathbf{C} \\
\gamma \Delta t \mathbf{M}^{-1}\mathbf{K}
& \mathbf{I}+ \gamma \Delta t \mathbf{M}^{-1}\mathbf{C}
\end{bmatrix}
\\
\mathbf{A_{ss0}} &=
\begin{bmatrix}
\mathbf{I} - \Delta t^2(1/2-\beta)\mathbf{M}^{-1}\mathbf{K}
& \Delta t \mathbf{I} - (1/2-\beta)\Delta t^2 \mathbf{M}^{-1}\mathbf{C} \\
-(1-\gamma)\Delta t \mathbf{M}^{-1}\mathbf{K}
& \mathbf{I} - (1-\gamma)\Delta t \mathbf{M}^{-1}\mathbf{C}
\end{bmatrix}
\\
\mathbf{B_{ss0}} &=
\begin{bmatrix}
(\Delta t^2(1/2-\beta) \mathbf{M}^{-1} \\
(1-\gamma)\Delta t \mathbf{M}^{-1}
\end{bmatrix}
\\
\mathbf{B_{ss1}} &=
\begin{bmatrix}
(\beta \Delta t^2) \mathbf{M}^{-1}\\
(\gamma \Delta t) \mathbf{M}^{-1}
\end{bmatrix}
This is not in standard space-state form because the state update equation
depends of the input at :math:`t_{n+1}`. This term can be eliminated by
defining the state
.. math:: \mathbf{x}_n =
\begin{Bmatrix}
\mathbf{q}_{n} \\
\mathbf{\dot q}_{n}
\end{Bmatrix}
- \mathbf{A_{ss1}}^{-1}\mathbf{B_{ss1}} \mathbf{f}_n
Then
.. math::
\mathbf{x}_{n+1} &= \mathbf{A_{ss1}}^{-1}[
\mathbf{A_{ss0}} \mathbf{x}_n + (
\mathbf{A_{ss0}}\mathbf{A_{ss1}}^{-1}\mathbf{B_{ss1}}
+ \mathbf{B_{ss0}}
)
\mathbf{f}_n
] \\
\begin{Bmatrix}
\mathbf{\dot q}_{n} \\
\mathbf{\ddot q}_{n}
\end{Bmatrix}
&= \mathbf{x}_n + \mathbf{B_{ss1}} \mathbf{f}_n
See also :func:`sharpy.linear.src.libss.SSconv` for more details on the elimination of the term
multiplying :math:`\mathbf{f}_{n+1}` in the state equation.
This system is identified with a standard discrete-time state-space model
.. math::
\textrm{th1} = \gamma \\
\textrm{th2} = \beta \\
\textrm{a0} = \Delta t^2 (1/2 -\beta) \\
\textrm{b0} = \Delta t (1 -\gamma) \\
\textrm{a1} = \Delta t^2 \beta \\
\textrm{b1} = \Delta t \gamma \\
\mathbf{x}_{n+1} &= \mathbf{A_{ss}} \mathbf{x}_n + \mathbf{B_{ss}} \mathbf{f}_n \\
\mathbf{y_n} &= \mathbf{C_{ss}} \mathbf{x}_n + \mathbf{D_{ss}} \mathbf{f}_n
Finally:
where
.. math::
A_{ss1} \begin{Bmatrix} \mathbf{\dot q}_{n+1} \\ \mathbf{\ddot q}_{n+1} \end{Bmatrix} =
A_{ss0} \begin{Bmatrix} \mathbf{\dot q}_{n} \\ \mathbf{\ddot q}_{n} \end{Bmatrix} +
\begin{Bmatrix} (\Delta t^2(1/2-\beta) \\ (1-\gamma)\Delta t \end{Bmatrix} M^{-1}F_n+
\begin{Bmatrix} (\Delta t^2\beta) \\ (\gamma \Delta t) \end{Bmatrix}M^{-1}F_{n+1}
To finally isolate the vector at :math:`n+1`, instead of inverting the :math:`A_{ss1}` matrix, several systems are
solved. Moreover, the output equation is simply :math:`y=x`.
\mathbf{A_{ss}} &= \mathbf{A_{ss1}}^{-1}\mathbf{A_{ss0}} \\
\mathbf{B_{ss}} &= \mathbf{A_{ss1}}^{-1}(\mathbf{B_{ss0}}
+ \mathbf{A_{ss0}}\mathbf{A_{ss1}}^{-1}\mathbf{B_{ss1}}) \\
\mathbf{C_{ss}} &= \mathbf{I} \\
\mathbf{D_{ss}} &= \mathbf{B_{ss1}}
.. admonition:: Notation is used in the code
.. math::
\texttt{th1} &= \gamma \\
\texttt{th2} &= \beta \\
\texttt{a0} &= (1/2 -\beta) \Delta t^2 \\
\texttt{b0} &= (1 -\gamma) \Delta t \\
\texttt{a1} &= \beta \Delta t^2 \\
\texttt{b1} &= \gamma \Delta t \\
Args:
Minv (np.array): Inverse mass matrix :math:`\mathbf{M^{-1}}`
M (np.array): Mass matrix :math:`\mathbf{M}`
C (np.array): Damping matrix :math:`\mathbf{C}`
K (np.array): Stiffness matrix :math:`\mathbf{K}`
dt (float): Timestep increment
num_damp (float): Numerical damping. Default ``1e-4``
M_is_SPD (bool): whether to factorized M using Cholesky (only works for SPD matrices) or LU decomposition. Default: ``False``
Returns:
tuple: the A, B, C, D matrices of the state space packed in a tuple with the predictor and delay term removed.
tuple: with the :math:`(\mathbf{A_{ss},B_{ss},C_{ss},D_{ss}})` matrices of the discrete-time state-space representation
References:
[1] - Geradin M., Rixen D. - Mechanical Vibrations: Theory and application to structural dynamics
Expand All @@ -1477,21 +1537,34 @@ def newmark_ss(Minv, C, K, dt, num_damp=1e-4):
b1 = th1 * dt
b0 = dt - b1

# relevant matrices
# Identity matrix
N = K.shape[0]
Imat = np.eye(N)
MinvK = np.dot(Minv, K)
MinvC = np.dot(Minv, C)

# Factorize M and obtain relevant matrices
# Even though the inverse needs to be explicitly calculated, using the matrix
# factorization is more numerically stable and faster than multiplying by the
# inverse
M_factors = sc.linalg.cho_factor(M) if M_is_SPD else sc.linalg.lu_factor(M)

def M_solve(b):
return sc.linalg.cho_solve(M_factors, b) if M_is_SPD else sc.linalg.lu_solve(M_factors, b)

Minv = M_solve(Imat)
MinvK = M_solve(K)
MinvC = M_solve(C)

# build StateSpace
Ass0 = np.block([[Imat - a0 * MinvK, dt * Imat - a0 * MinvC],
[-b0 * MinvK, Imat - b0 * MinvC]])
Ass1 = np.block([[Imat + a1 * MinvK, a1 * MinvC],
[b1 * MinvK, Imat + b1 * MinvC]])
Ass = np.linalg.solve(Ass1, Ass0)

Bss0 = np.linalg.solve(Ass1, np.block([[a0 * Minv], [b0 * Minv]]))
Bss1 = np.linalg.solve(Ass1, np.block([[a1 * Minv], [b1 * Minv]]))
# Factorize Ass1 once, solve multiple times
Ass1_factors = sc.linalg.lu_factor(Ass1)
Ass = sc.linalg.lu_solve(Ass1_factors, Ass0)
Bss0 = sc.linalg.lu_solve(Ass1_factors, np.block([[a0 * Minv], [b0 * Minv]]))
Bss1 = sc.linalg.lu_solve(Ass1_factors, np.block([[a1 * Minv], [b1 * Minv]]))

# eliminate predictior term Bss1
return libss.SSconv(Ass, Bss0, Bss1, C=np.eye(2 * N), D=np.zeros((2 * N, N)))
Expand Down
2 changes: 1 addition & 1 deletion tests/linear/rom/test_springmasssystem.py
Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,7 @@ def build_system(self, system_inputs, system_time):
else:
# Discrete time system
dt = 1e-2
Adt, Bdt, Cdt, Ddt = lingebm.newmark_ss(Minv, C, k, dt=dt, num_damp=0)
Adt, Bdt, Cdt, Ddt = lingebm.newmark_ss(m, C, k, dt=dt, num_damp=0)

system = libss.StateSpace(Adt, Bdt, Cdt, Ddt, dt=dt)

Expand Down

0 comments on commit e0ae0de

Please sign in to comment.