Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix module mapping error of baichuan model #977

Merged
merged 2 commits into from
Jan 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
120 changes: 110 additions & 10 deletions lmdeploy/pytorch/models/baichuan.py
Original file line number Diff line number Diff line change
Expand Up @@ -205,6 +205,92 @@ def _qkv_proj(hidden_states):

class BaichuanModel(nn.Module):

def _continuous_batching_forward_7b(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
"""Rewrite implementation of 7b BaichuanModel.forward."""
output_attentions = (output_attentions if output_attentions is not None
else self.config.output_attentions)
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else
self.config.output_hidden_states)

if use_cache is None:
use_cache = self.config.use_cache

return_dict = (return_dict if return_dict is not None else
self.config.use_return_dict)

assert (
position_ids is not None
), 'position_ids can not be none when using continuous batching mode.'
assert position_ids.dim() == 2

if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)

# Attention mask is not necessary in continuous batching
attention_mask = None

hidden_states = inputs_embeds

# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None

for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states, )

past_key_value = (past_key_values[idx]
if past_key_values is not None else None)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]

if use_cache:
next_decoder_cache += (
layer_outputs[2 if output_attentions else 1], )

if output_attentions:
all_self_attns += (layer_outputs[1], )

hidden_states = self.norm(hidden_states)

# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states, )

next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v for v in
[hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None)

return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)

def _continuous_batching_forward(
self,
input_ids: torch.LongTensor = None,
Expand Down Expand Up @@ -279,6 +365,7 @@ def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
Expand All @@ -287,13 +374,26 @@ def forward(
return_dict: Optional[bool] = True,
):
"""Rewrite of BaichuanModel.forward."""
return self._continuous_batching_forward(
input_ids,
attention_mask,
past_key_values,
inputs_embeds,
use_cache,
output_attentions,
output_hidden_states,
return_dict,
)
if position_ids is not None:
return self._continuous_batching_forward_7b(
input_ids,
attention_mask,
position_ids,
past_key_values,
inputs_embeds,
use_cache,
output_attentions,
output_hidden_states,
return_dict,
)
else:
return self._continuous_batching_forward(
input_ids,
attention_mask,
past_key_values,
inputs_embeds,
use_cache,
output_attentions,
output_hidden_states,
return_dict,
)
4 changes: 0 additions & 4 deletions lmdeploy/pytorch/models/module_map.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
# Copyright (c) OpenMMLab. All rights reserved.
from transformers.utils import TRANSFORMERS_DYNAMIC_MODULE_NAME

LMDEPLOY_PYTORCH_MODEL_PATH = 'lmdeploy.pytorch.models'

Expand Down Expand Up @@ -52,9 +51,6 @@
MODULE_MAP.update({
'modeling_baichuan.Model':
f'{LMDEPLOY_PYTORCH_MODEL_PATH}.llama.LlamaModel', # noqa
(f'{TRANSFORMERS_DYNAMIC_MODULE_NAME}.Baichuan2-7B-Chat'
'.modeling_baichuan.BaichuanModel'):
f'{LMDEPLOY_PYTORCH_MODEL_PATH}.llama.LlamaModel', # noqa
'modeling_baichuan.BaichuanModel':
f'{LMDEPLOY_PYTORCH_MODEL_PATH}.baichuan.BaichuanModel', # noqa
'modeling_baichuan.Attention':
Expand Down
Loading