Skip to content

Pytorch implement of Deeply Supervised Salient Object Detection with Short Connection

Notifications You must be signed in to change notification settings

JosephineRabbit/DSS-pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DSS-pytorch

Pytorch implement of Deeply Supervised Salient Object Detection with Short Connection

The official caffe version: DSS

Prerequisites

Results

The information of Loss:

Example output:

Usage

1. Clone the repository

git clone [email protected]:AceCoooool/DSS-pytorch.git
cd DSS-pytorch/

2. Download the dataset

Note: the original paper use other datasets.

Download the ECSSD dataset. (see NLFD-pytorch)

bash download.sh

3. Get pre-trained vgg

cd tools/
python extract_vgg.py
cd ..

4. Demo (coming soon)

python demo.py --demo_img='your_picture' --trained_model='pre_trained pth' --cuda=True

Note:

  1. default choose: download and copy the pretrained model to weights directory
  2. a demo picture is in png/demo.jpg

5. Train

python main.py --mode='train' --train_path='you_data' --label_path='you_label' --batch_size=8 --visdom=True

Note:

  1. --val=True add the validation (but your need to add the --val_path and --val_label)
  2. you_data, you_label means your training data root. (connect to the step 2)

6. Test

python main.py --mode='test', --test_path='you_data' --test_label='your_label' --batch_size=1 --model='your_trained_model'

TODO

  • add RCF process
  • test other connection situation

About

Pytorch implement of Deeply Supervised Salient Object Detection with Short Connection

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%