Pytorch implement of Deeply Supervised Salient Object Detection with Short Connection
The official caffe version: DSS
- Python 3
- Pytorch 0.3.0
- torchvision
- visdom (optional for visualization)
The information of Loss:
Example output:
git clone [email protected]:AceCoooool/DSS-pytorch.git
cd DSS-pytorch/
Note: the original paper use other datasets.
Download the ECSSD dataset. (see NLFD-pytorch)
bash download.sh
cd tools/
python extract_vgg.py
cd ..
python demo.py --demo_img='your_picture' --trained_model='pre_trained pth' --cuda=True
Note:
- default choose: download and copy the pretrained model to
weights
directory - a demo picture is in
png/demo.jpg
python main.py --mode='train' --train_path='you_data' --label_path='you_label' --batch_size=8 --visdom=True
Note:
--val=True
add the validation (but your need to add the--val_path
and--val_label
)you_data, you_label
means your training data root. (connect to the step 2)
python main.py --mode='test', --test_path='you_data' --test_label='your_label' --batch_size=1 --model='your_trained_model'
- add RCF process
- test other connection situation