Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding a scout-PSO option #893

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
49 changes: 34 additions & 15 deletions src/multivariate/solvers/zeroth_order/particle_swarm.jl
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,8 @@ mutable struct ParticleSwarmState{Tx,T} <: ZerothOrderState
x_learn
current_state
iterations::Int
scout_limit::Int
scout_counts::Vector{Int}
end

function initial_state(method::ParticleSwarm, options, d, initial_x::AbstractArray{T}) where T
Expand Down Expand Up @@ -116,7 +118,6 @@ function initial_state(method::ParticleSwarm, options, d, initial_x::AbstractArr
current_state = 0

value!!(d, initial_x)
score[1] = value(d)

# if search space is limited, spread the initial population
# uniformly over the whole search space
Expand Down Expand Up @@ -150,11 +151,9 @@ function initial_state(method::ParticleSwarm, options, d, initial_x::AbstractArr
X[j, 1] = initial_x[j]
X_best[j, 1] = initial_x[j]
end

for i in 2:n_particles
score[i] = value(d, X[:, i])
end

scout_counts = zeros(Int,n_particles)
# According to eq. 9 in "A PSO based approach: Scout particle swarm algorithm for continuous global optimization problems."
scout_limit = Int(ceil(n*n_particles/12))
ParticleSwarmState(
x,
0,
Expand All @@ -172,11 +171,17 @@ function initial_state(method::ParticleSwarm, options, d, initial_x::AbstractArr
best_score,
x_learn,
0,
options.iterations)
options.iterations,
scout_limit,
scout_counts)
end

function update_state!(f, state::ParticleSwarmState{T}, method::ParticleSwarm) where T
n = length(state.x)
if state.limit_search_space
limit_X!(state.X, state.lower, state.upper, state.n_particles, n)
end
compute_cost!(f, state.n_particles, state.X, state.score)

if state.iteration == 0
copyto!(state.best_score, state.score)
Expand All @@ -188,7 +193,8 @@ function update_state!(f, state::ParticleSwarmState{T}, method::ParticleSwarm) w
state.X_best,
state.x,
value(f),
state.n_particles)
state.n_particles,
state.scout_counts) # adding One to the scout count if the personal best did not change.
# Elitist Learning:
# find a new solution named 'x_learn' which is the current best
# solution with one randomly picked variable being modified.
Expand Down Expand Up @@ -237,15 +243,25 @@ function update_state!(f, state::ParticleSwarmState{T}, method::ParticleSwarm) w
state.w, state.c1, state.c2 = update_swarm_params!(state.c1, state.c2, state.w, state.current_state, _f)
update_swarm!(state.X, state.X_best, state.x, n, state.n_particles, state.V, state.w, state.c1, state.c2)

if state.limit_search_space
limit_X!(state.X, state.lower, state.upper, state.n_particles, n)
end
compute_cost!(f, state.n_particles, state.X, state.score)

scout_phase!(state.X, state.X_best, state.scout_counts,state.scout_limit, n,state.n_particles, state.lower)
state.iteration += 1
false
end

function scout_phase!(X::AbstractArray{Tx}, X_best, scout_count, scout_limit, n,n_particles, x0) where Tx

for i in 1:n_particles
if scout_count[i] >= scout_limit
print("Particle $i Regenerated!\n")
for j in 1:n
X[j,i] = x0[j] + 2*(rand()-1/2)*x0[j]
X_best[j,i] = X[j,i]
end
scout_count[i] = 0
end
end
end


function update_swarm!(X::AbstractArray{Tx}, X_best, best_point, n, n_particles, V,
w, c1, c2) where Tx
Expand Down Expand Up @@ -438,10 +454,11 @@ function update_swarm_params!(c1, c2, w, current_state, f::T) where T
end

function housekeeping!(score, best_score, X, X_best, best_point,
F, n_particles)
F, n_particles,scout_counts)
n = size(X, 1)
for i in 1:n_particles
if score[i] <= best_score[i]
scout_counts[i] = 0
best_score[i] = score[i]
for k in 1:n
X_best[k, i] = X[k, i]
Expand All @@ -452,6 +469,8 @@ function housekeeping!(score, best_score, X, X_best, best_point,
end
F = score[i]
end
else
scout_counts[i] += 1
end
end
return F
Expand All @@ -476,7 +495,7 @@ function compute_cost!(f,
X::Matrix,
score::Vector)

for i in 1:n_particles
Threads.@threads for i in 1:n_particles
score[i] = value(f, X[:, i])
end
nothing
Expand Down