-
-
Notifications
You must be signed in to change notification settings - Fork 214
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge PR #422 from Kosinkadink/develop - Custom CFG Improvements + GP…
…U Noise Custom CFG Improvements + GPU Noise
- Loading branch information
Showing
11 changed files
with
525 additions
and
56 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
from typing import Union | ||
|
||
import inspect | ||
import torch | ||
from torch import Tensor | ||
|
||
import comfy.model_patcher | ||
import comfy.samplers | ||
|
||
from .utils_motion import extend_to_batch_size, prepare_mask_batch | ||
|
||
|
||
################################################################################ | ||
# helpers for modifying model_options to apply cfg function patches; | ||
# taken from comfy/model_patcher.py | ||
def set_model_options_sampler_cfg_function(model_options: dict[str], sampler_cfg_function, disable_cfg1_optimization=False): | ||
if len(inspect.signature(sampler_cfg_function).parameters) == 3: | ||
model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way | ||
else: | ||
model_options["sampler_cfg_function"] = sampler_cfg_function | ||
if disable_cfg1_optimization: | ||
model_options["disable_cfg1_optimization"] = True | ||
return model_options | ||
#------------------------------------------------------------------------------- | ||
|
||
|
||
# this is a modified version of PerturbedAttentionGuidance from comfy_extras/nodes_pag.py | ||
def perturbed_attention_guidance_patch(scale_multival: Union[float, Tensor]): | ||
unet_block = "middle" | ||
unet_block_id = 0 | ||
|
||
def perturbed_attention(q, k, v, extra_options, mask=None): | ||
return v | ||
|
||
def post_cfg_function(args): | ||
model = args["model"] | ||
cond_pred: Tensor = args["cond_denoised"] | ||
cond = args["cond"] | ||
cfg_result = args["denoised"] | ||
sigma = args["sigma"] | ||
model_options = args["model_options"].copy() | ||
x = args["input"] | ||
|
||
if type(scale_multival) != Tensor and scale_multival == 0: | ||
return cfg_result | ||
|
||
scale = scale_multival | ||
if isinstance(scale, Tensor): | ||
scale = prepare_mask_batch(scale.to(cond_pred.dtype).to(cond_pred.device), cond_pred.shape) | ||
scale = extend_to_batch_size(scale, cond_pred.shape[0]) | ||
|
||
# Replace Self-attention with PAG | ||
model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, perturbed_attention, "attn1", unet_block, unet_block_id) | ||
(pag,) = comfy.samplers.calc_cond_batch(model, [cond], x, sigma, model_options) | ||
|
||
return cfg_result + (cond_pred - pag) * scale | ||
|
||
return post_cfg_function | ||
|
||
|
||
# this is a modified version of RescaleCFG from comfy_extras/nodes_model_advanced.py | ||
def rescale_cfg_patch(multiplier_multival: Union[float, Tensor]): | ||
def cfg_function(args): | ||
cond: Tensor = args["cond"] | ||
uncond = args["uncond"] | ||
cond_scale = args["cond_scale"] | ||
sigma = args["sigma"] | ||
sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1)) | ||
x_orig = args["input"] | ||
|
||
#rescale cfg has to be done on v-pred model output | ||
x = x_orig / (sigma * sigma + 1.0) | ||
cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma) | ||
uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma) | ||
|
||
#rescalecfg | ||
x_cfg = uncond + cond_scale * (cond - uncond) | ||
ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True) | ||
ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True) | ||
|
||
multiplier = multiplier_multival | ||
if isinstance(multiplier, Tensor): | ||
multiplier = prepare_mask_batch(multiplier.to(cond.dtype).to(cond.device), cond.shape) | ||
multiplier = extend_to_batch_size(multiplier, cond.shape[0]) | ||
|
||
x_rescaled = x_cfg * (ro_pos / ro_cfg) | ||
x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg | ||
|
||
return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5) | ||
|
||
return cfg_function |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.