Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

FSDP: Enable limiting scope using trainer grid rows/columns #2424

Merged
merged 1 commit into from
Feb 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions applications/nlp/transformer/parallelism.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,11 @@

#############################################################################

def _get_sharding_strategy(args: argparse.Namespace) -> lbann.ShardingStrategy:
if args.fsdp_ranks > 0:
return lbann.ShardingStrategy.GRID_ROWS
return lbann.ShardingStrategy.FULL


# Fully-sharded data parallelism (MLP only)
def apply_fsdp_mlp(module: lbann.models.Transformer,
Expand All @@ -34,11 +39,14 @@ def apply_fsdp_mlp(module: lbann.models.Transformer,
enumerate(module.decoder)):
for w in submodule.fc1_weights:
w.sharded = True
w.sharding_strategy = _get_sharding_strategy(args)
for w in submodule.fc2_weights:
w.sharded = True
w.sharding_strategy = _get_sharding_strategy(args)

for w in other_weights:
w.sharded = True
w.sharding_strategy = _get_sharding_strategy(args)


# Fully-sharded data parallelism (all weights)
Expand All @@ -63,6 +71,7 @@ def apply_fsdp_allweights(model: lbann.Model, args: argparse.Namespace):
if layer.weights:
if len(layer.weights) > 0:
layer.weights[0].sharded = True
layer.weights[0].sharding_strategy = _get_sharding_strategy(args)


# Model (FFN tensor) parallelism
Expand Down Expand Up @@ -254,6 +263,15 @@ def add_transformer_parallelism_arguments(parser: argparse.Namespace,
help='Apply Fully-Sharded Data-Parallelism (FSDP) and shard all weights'
)

parser.add_argument(
'--fsdp-ranks',
default=0,
type=int,
help='Number of consecutive nodes to shard weights in FSDP. This '
'setting will modify the LBANN process grid height. (default: 0, shard '
'across all ranks)'
)

parser.add_argument(
'--fsdp-mlp',
action='store_true',
Expand Down
4 changes: 4 additions & 0 deletions applications/nlp/transformer/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -215,6 +215,10 @@ def make_batch_script(model: lbann.Model,
"LBANN_DISABLE_DISTCONV": 1,
}

# Set FSDP ranks, if given, by changing the trainer grid height
if args.fsdp_ranks > 0:
script_params['environment']['LBANN_TRAINER_GRID_HEIGHT'] = args.fsdp_ranks

save_text = args.save_prototext
filename = 'experiment.prototext' if save_text else 'experiment.protobin'
# Create Protobuf file
Expand Down
7 changes: 7 additions & 0 deletions include/lbann/weights/weights.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -262,6 +262,10 @@ class weights : public Cloneable<HasAbstractFunction<weights>>
bool is_sharded() const { return m_sharded; }
/** Set weight sharding configuration. */
void set_sharded(bool value) { m_sharded = value; }
/** Get sharding distribution (VC, MC, MR, or STAR if not sharded). */
El::Dist get_sharding_distribution() const { return m_sharding_strategy; }
/** Set sharding distribution (VC, MC, MR, or STAR if not sharded). */
void set_sharding_distribution(El::Dist dist) { m_sharding_strategy = dist; }

// -----------------------------------------------
// Freezing
Expand Down Expand Up @@ -370,6 +374,9 @@ class weights : public Cloneable<HasAbstractFunction<weights>>

/** Whether weights are sharded across ranks. */
bool m_sharded;

/** How weights are sharded across ranks. */
El::Dist m_sharding_strategy;
};

} // namespace lbann
Expand Down
18 changes: 16 additions & 2 deletions python/lbann/core/weights.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
"""Trainable model parameters."""
import abc
from lbann import weights_pb2
from enum import Enum
from typing import Optional
import lbann.core.util

class Initializer(abc.ABC):
Expand All @@ -22,19 +24,28 @@ def export_proto(self):
for c in classes:
globals()[c.__name__] = c


class ShardingStrategy(Enum):
FULL = 0 # Sharded across all ranks (STAR x VC)
GRID_ROWS = 1 # Sharded across the process grid rows (STAR x MC)
GRID_COLS = 2 # Sharded across the process grid columns (STAR x MR)


class Weights:
"""Trainable parameters for neural network."""

global_count = 0 # Static counter, used for default names

def __init__(self, initializer=None, optimizer=None, name=None, datatype=None,
sharded=None):
def __init__(self, initializer=None, optimizer=None, name=None,
datatype=None, sharded=None,
sharding_strategy: Optional[ShardingStrategy] = None):
Weights.global_count += 1
self.name = name if name else 'weights{0}'.format(Weights.global_count)
self.initializer = initializer
self.optimizer = optimizer
self.datatype = datatype
self.sharded = sharded
self.sharding_strategy = sharding_strategy

def export_proto(self):
"""Construct and return a protobuf message."""
Expand All @@ -58,4 +69,7 @@ def export_proto(self):
if self.sharded:
proto.sharded = self.sharded

if self.sharding_strategy is not None:
proto.sharding_strategy = self.sharding_strategy.value

return proto
19 changes: 19 additions & 0 deletions src/proto/factories/weights_factory.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -174,7 +174,26 @@ lbann::proto::construct_weights(lbann_comm* comm,
w->set_name(name);
}

// Set sharding configuration and strategy
w->set_sharded(proto_weights.sharded());
if (proto_weights.sharded()) {
El::Dist dist;
switch (proto_weights.sharding_strategy()) {
case lbann_data::ShardingStrategy::FULL:
dist = El::VC;
break;
case lbann_data::ShardingStrategy::GRID_ROWS:
dist = El::MC;
break;
case lbann_data::ShardingStrategy::GRID_COLS:
dist = El::MR;
break;
default:
dist = El::STAR;
break;
}
w->set_sharding_distribution(dist);
}

// Set weights initializer and optimizer
w->set_initializer(std::move(init));
Expand Down
7 changes: 7 additions & 0 deletions src/proto/weights.proto
Original file line number Diff line number Diff line change
Expand Up @@ -31,12 +31,19 @@ import "optimizers.proto";

package lbann_data;

enum ShardingStrategy {
FULL = 0; // Sharded across all ranks (STAR x VC)
GRID_ROWS = 1; // Sharded across the process grid rows (STAR x MC)
GRID_COLS = 2; // Sharded across the process grid columns (STAR x MR)
}

message Weights {
string name = 1;
Optimizer optimizer = 2;
Initializer initializer = 3;
DataType datatype = 4;
bool sharded = 5;
ShardingStrategy sharding_strategy = 6;
}

message Initializer {
Expand Down
9 changes: 5 additions & 4 deletions src/weights/data_type_weights.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -239,16 +239,17 @@ void data_type_weights<TensorDataType>::do_setup_()
}

// Construct matrix for weight values
// If sharded, use STAR_VC distribution (column distributed) or VC_STAR (row
// If sharded, use STAR_{VC,MC,MR} distribution or {VC,MC,MR}_STAR (row
// distributed) if width=1.
auto dist = this->get_sharding_distribution();
auto matrix_dist = this->get_matrix_distribution();
bool must_use_vc_star = (this->get_matrix_width() == 1);
bool must_use_x_star = (this->get_matrix_width() == 1);
m_values.reset(AbsDistMatrixType::Instantiate(
*matrix_dist.grid,
matrix_dist.root,
this->is_sharded() ? (must_use_vc_star ? El::VC : El::STAR)
this->is_sharded() ? (must_use_x_star ? dist : El::STAR)
: matrix_dist.colDist,
this->is_sharded() ? (must_use_vc_star ? El::STAR : El::VC)
this->is_sharded() ? (must_use_x_star ? El::STAR : dist)
: matrix_dist.rowDist,
(matrix_dist.blockHeight == 1 && matrix_dist.blockWidth == 1 ? El::ELEMENT
: El::BLOCK),
Expand Down
11 changes: 8 additions & 3 deletions src/weights/weights.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,11 @@ std::string get_dims_string(const std::vector<size_t>& matrix_height_dims,

} // namespace

weights::weights() : m_comm(nullptr), m_frozen(false), m_sharded(false)
weights::weights()
: m_comm(nullptr),
m_frozen(false),
m_sharded(false),
m_sharding_strategy(El::STAR)
{

// Initialize weights name
Expand All @@ -84,12 +88,13 @@ weights::weights(lbann_comm& comm) : weights()
template <typename ArchiveT>
void weights::serialize(ArchiveT& ar)
{
ar(CEREAL_NVP(m_name), CEREAL_NVP(m_frozen));
ar(CEREAL_NVP(m_name), CEREAL_NVP(m_frozen), CEREAL_NVP(m_sharded));

// What about:
// m_matrix_height_dims
// m_matrix_width_dims
// m_matrix_dist
// m_sharding_strategy
}

description weights::get_description() const
Expand Down Expand Up @@ -118,7 +123,7 @@ description weights::get_description() const

// Sharding state
if (is_sharded()) {
desc.add("Sharded");
desc.add("Sharded, distribution", get_sharding_distribution());
}

// Derived class contribution
Expand Down
Loading