Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enable Asymmetric DistConv Kernels #2428

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
import lbann
import numpy as np
import test_util
import pytest
import os
import sys
import lbann.contrib.launcher
import lbann.contrib.args

# Bamboo utilities
current_file = os.path.realpath(__file__)
current_dir = os.path.dirname(current_file)
sys.path.insert(0, os.path.join(os.path.dirname(current_dir), 'common_python'))
import tools

@pytest.mark.parametrize('num_dims', [2, 3])
@test_util.lbann_test(check_gradients=True,
environment=lbann.contrib.args.get_distconv_environment(),
time_limit=10)
def test_simple(num_dims):
try:
import torch
import torch.nn as nn
except:
pytest.skip('PyTorch is required to run this test.')

torch.manual_seed(20240216)
# Two samples of 4x16x16 or 4x16x16x16 tensors
shape = [2, 4] + [16] * num_dims
x = torch.randn(shape)
if num_dims == 2:
ConvClass = nn.Conv2d
kerenel_size = (3, 1)
padding = (1, 0)
group_name = 'height_groups'
else:
ConvClass = nn.Conv3d
kerenel_size = (5, 3, 1)
padding = (2, 1, 0)
group_name = 'depth_groups'

conv = ConvClass(4, 8, kerenel_size, padding=padding, bias=False)
with torch.no_grad():
ref = conv(x)

tester = test_util.ModelTester()
x = tester.inputs(x.numpy())
ref = tester.make_reference(ref.numpy())

# Test layer
kernel = conv.weight.detach().numpy()
kernel_weights = lbann.Weights(
initializer=lbann.ValueInitializer(values=np.nditer(kernel)),
name=f'kernel_{num_dims}d'
)
ps = {group_name: tools.gpus_per_node(lbann)}
y = lbann.Convolution(
x,
weights=(kernel_weights,),
num_dims=num_dims,
out_channels=8,
kernel_size=kerenel_size,
stride=1,
padding=padding,
dilation=1,
has_bias=False,
parallel_strategy=ps,
name=f'conv_{num_dims}d'
)
y = lbann.Identity(y)
tester.set_loss(lbann.MeanSquaredError(y, ref))
tester.set_check_gradients_tensor(lbann.Square(y))
return tester
4 changes: 0 additions & 4 deletions src/layers/learning/convolution.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -264,10 +264,6 @@ bool convolution_layer<TensorDataType, Layout, Device>::is_distconv_supported()
{
const auto& kernel_dims = get_kernel_dims();
for (int i = 0; i < dc::get_num_spatial_dims(*this); i++) {
if (kernel_dims[2 + i] != kernel_dims[2]) {
dc::MPIRootPrintStreamDebug() << "Nonsymmetric kernel not supported";
return false;
}
if (kernel_dims[2 + i] != this->m_pads[i] / this->m_dilations[i] * 2 + 1) {
dc::MPIRootPrintStreamDebug()
<< "Unsupported as padding does not match the kernel size";
Expand Down
Loading