This is the readme for the model associated with the paper: Chavlis S, Petrantonakis PC, Poirazi P. Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity. Hippocampus, 2017 Jan;27(1):89-110. doi: 10.1002/hipo.22675. Epub 2016 Nov 10. doi: https://doi.org/10.1002/hipo.22675
This python model was contributed by S Chavlis.
The codes there are for various validation tests in order to create figure2 and several supplement figures 3,6 and 12 dendrites folders
The main code for every model with 12, 6 and 3 dendrites on Granule Cells.
The code represents one Trial for a given input pattern as well as a specific connectivity in the ConnectivityMatrices_#dendrites folder
Need 50 Trials of each code with 50 different input patterns.
Each main code should run for different overlaps, specifric comments inside code.
For many input patterns use the following code inputs.py
#####################################################
from brian import reinit,clear
import numpy as np
import random as pyrandom
import sys
def input_patterns(trial_i):
reinit(states = True)
clear(erase = True, all = True)
Trial = trial_i[0]
# Initial pattern
scale_fac = 2
N_input = 100 * scale_fac
d_input = 0.10 # active input density
# Active pattern of neurons
active = sorted(pyrandom.sample(xrange(N_input), int(d_input*N_input)))
np.save('active_pattern_'+str(Trial)+'.npy', active)
return
jobidx = int(sys.argv[1])
results = input_patterns([jobidx]) # launches multiple processes
#####################################################
python inputs.py <number form 1 to 50>