Skip to content

Build wheels and deploy #85

Build wheels and deploy

Build wheels and deploy #85

Workflow file for this run

# This workflow will:
# - Create a new Github release
# - Build wheels for supported architectures
# - Deploy the wheels to the Github release
# - Release the static code to PyPi
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
name: Build wheels and deploy
on:
create:
tags:
- v*
jobs:
setup_release:
name: Create Release
runs-on: ubuntu-latest
steps:
- name: Get the tag version
id: extract_branch
run: echo ::set-output name=branch::${GITHUB_REF#refs/tags/}
shell: bash
- name: Create Release
id: create_release
uses: actions/create-release@v1
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
tag_name: ${{ steps.extract_branch.outputs.branch }}
release_name: ${{ steps.extract_branch.outputs.branch }}
build_wheels:
name: Build Wheel
needs: setup_release
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
# Using ubuntu-20.04 instead of 22.04 for more compatibility (glibc). Ideally we'd use the
# manylinux docker image, but I haven't figured out how to install CUDA on manylinux.
os: [ubuntu-20.04]
python-version: ['3.8', '3.9', '3.10', '3.11', '3.12']
torch-version: ['2.0.1', '2.1.2', '2.2.2', '2.3.1', '2.4.0']
cuda-version: ['11.8.0', '12.3.2']
# We need separate wheels that either uses C++11 ABI (-D_GLIBCXX_USE_CXX11_ABI) or not.
# Pytorch wheels currently don't use it, but nvcr images have Pytorch compiled with C++11 ABI.
# Without this we get import error (undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationESs)
# when building without C++11 ABI and using it on nvcr images.
cxx11_abi: ['FALSE', 'TRUE']
exclude:
# see https://github.com/pytorch/pytorch/blob/main/RELEASE.md#release-compatibility-matrix
# Pytorch < 2.2 does not support Python 3.12
- torch-version: '2.0.1'
python-version: '3.12'
- torch-version: '2.1.2'
python-version: '3.12'
# Pytorch <= 2.0 only supports CUDA <= 11.8
- torch-version: '2.0.1'
cuda-version: '12.3.2'
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Set CUDA and PyTorch versions
run: |
echo "MATRIX_CUDA_VERSION=$(echo ${{ matrix.cuda-version }} | awk -F \. {'print $1 $2'})" >> $GITHUB_ENV
echo "MATRIX_TORCH_VERSION=$(echo ${{ matrix.torch-version }} | awk -F \. {'print $1 "." $2'})" >> $GITHUB_ENV
- name: Free up disk space
if: ${{ runner.os == 'Linux' }}
# https://github.com/easimon/maximize-build-space/blob/master/action.yml
# https://github.com/easimon/maximize-build-space/tree/test-report
run: |
sudo rm -rf /usr/share/dotnet
sudo rm -rf /opt/ghc
sudo rm -rf /opt/hostedtoolcache/CodeQL
- name: Set up swap space
if: runner.os == 'Linux'
uses: pierotofy/[email protected]
with:
swap-size-gb: 10
- name: Install CUDA ${{ matrix.cuda-version }}
if: ${{ matrix.cuda-version != 'cpu' }}
uses: Jimver/[email protected]
id: cuda-toolkit
with:
cuda: ${{ matrix.cuda-version }}
linux-local-args: '["--toolkit"]'
# default method is "local", and we're hitting some error with caching for CUDA 11.8 and 12.1
# method: ${{ (matrix.cuda-version == '11.8.0' || matrix.cuda-version == '12.1.0') && 'network' || 'local' }}
method: 'network'
# We need the cuda libraries (e.g. cuSparse, cuSolver) for compiling PyTorch extensions,
# not just nvcc
# sub-packages: '["nvcc"]'
- name: Install PyTorch ${{ matrix.torch-version }}+cu${{ matrix.cuda-version }}
run: |
pip install --upgrade pip
# If we don't install before installing Pytorch, we get error for torch 2.0.1
# ERROR: Could not find a version that satisfies the requirement setuptools>=40.8.0 (from versions: none)
pip install lit
# For some reason torch 2.2.0 on python 3.12 errors saying no setuptools
pip install setuptools
# We want to figure out the CUDA version to download pytorch
# e.g. we can have system CUDA version being 11.7 but if torch==1.12 then we need to download the wheel from cu116
# see https://github.com/pytorch/pytorch/blob/main/RELEASE.md#release-compatibility-matrix
# This code is ugly, maybe there's a better way to do this.
export TORCH_CUDA_VERSION=$(python -c "from os import environ as env; \
minv = {'2.0': 117, '2.1': 118, '2.2': 118, '2.3': 118, '2.4': 118}[env['MATRIX_TORCH_VERSION']]; \
maxv = {'2.0': 118, '2.1': 121, '2.2': 121, '2.3': 121, '2.4': 121}[env['MATRIX_TORCH_VERSION']]; \
print(max(min(int(env['MATRIX_CUDA_VERSION']), maxv), minv))" \
)
if [[ ${{ matrix.torch-version }} == *"dev"* ]]; then
pip install --no-cache-dir --pre torch==${{ matrix.torch-version }} --index-url https://download.pytorch.org/whl/nightly/cu${TORCH_CUDA_VERSION}
else
pip install --no-cache-dir torch==${{ matrix.torch-version }} --index-url https://download.pytorch.org/whl/cu${TORCH_CUDA_VERSION}
fi
nvcc --version
python --version
python -c "import torch; print('PyTorch:', torch.__version__)"
python -c "import torch; print('CUDA:', torch.version.cuda)"
python -c "from torch.utils import cpp_extension; print (cpp_extension.CUDA_HOME)"
shell:
bash
- name: Build wheel
run: |
# We want setuptools >= 49.6.0 otherwise we can't compile the extension if system CUDA version is 11.7 and pytorch cuda version is 11.6
# https://github.com/pytorch/pytorch/blob/664058fa83f1d8eede5d66418abff6e20bd76ca8/torch/utils/cpp_extension.py#L810
# However this still fails so I'm using a newer version of setuptools
pip install setuptools==68.0.0
pip install ninja packaging wheel
export PATH=/usr/local/nvidia/bin:/usr/local/nvidia/lib64:$PATH
export LD_LIBRARY_PATH=/usr/local/nvidia/lib64:/usr/local/cuda/lib64:$LD_LIBRARY_PATH
# Limit MAX_JOBS otherwise the github runner goes OOM
# CUDA 11.8 can compile with 2 jobs, but CUDA 12.3 goes OOM
MAX_JOBS=$([ "$MATRIX_CUDA_VERSION" == "123" ] && echo 1 || echo 2) FLASH_ATTENTION_FORCE_BUILD="TRUE" FLASH_ATTENTION_FORCE_CXX11_ABI=${{ matrix.cxx11_abi}} python setup.py bdist_wheel --dist-dir=dist
tmpname=cu${MATRIX_CUDA_VERSION}torch${MATRIX_TORCH_VERSION}cxx11abi${{ matrix.cxx11_abi }}
wheel_name=$(ls dist/*whl | xargs -n 1 basename | sed "s/-/+$tmpname-/2")
ls dist/*whl |xargs -I {} mv {} dist/${wheel_name}
echo "wheel_name=${wheel_name}" >> $GITHUB_ENV
- name: Log Built Wheels
run: |
ls dist
- name: Get the tag version
id: extract_branch
run: echo ::set-output name=branch::${GITHUB_REF#refs/tags/}
- name: Get Release with tag
id: get_current_release
uses: joutvhu/get-release@v1
with:
tag_name: ${{ steps.extract_branch.outputs.branch }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Upload Release Asset
id: upload_release_asset
uses: actions/upload-release-asset@v1
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
upload_url: ${{ steps.get_current_release.outputs.upload_url }}
asset_path: ./dist/${{env.wheel_name}}
asset_name: ${{env.wheel_name}}
asset_content_type: application/*
publish_package:
name: Publish package
needs: [build_wheels]
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies
run: |
pip install ninja packaging setuptools wheel twine
# We don't want to download anything CUDA-related here
pip install torch --index-url https://download.pytorch.org/whl/cpu
- name: Build core package
env:
FLASH_ATTENTION_SKIP_CUDA_BUILD: "TRUE"
run: |
python setup.py sdist --dist-dir=dist
- name: Deploy
env:
TWINE_USERNAME: "__token__"
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
run: |
python -m twine upload dist/*