Skip to content

Riiick2011/TAN

Repository files navigation

#You Can Only Watch the Past:Track Attention Network for Online Spatio-Temporal Action Detection

Overview of TAN

image

Requirements

  • We recommend you to use Anaconda to create a conda environment:
conda create -n tan python=3.6
  • Then, activate the environment:
conda activate tan
  • Requirements:
pip install -r requirements.txt 

Visualization

Dataset

UCF101-24:

You can download UCF24 from the following links:

  • Google drive

Link: https://drive.google.com/file/d/1Dwh90pRi7uGkH5qLRjQIFiEmMJrAog5J/view?usp=sharing

  • BaiduYun Disk

Link: https://pan.baidu.com/s/11GZvbV0oAzBhNDVKXsVGKg

Password: hmu6

Train TAN

  • UCF101-24

For example:

python -m torch.distributed.launch --nnodes 1 --nproc_per_node 2 train.py --cuda -d ucf24 --data_root /data1/su/datasets/UCF24-YOWO/ -bs 32 -tbs 16 -K 16 -accu 8 -v yowo_v3_large --max_epoch 7 --lr_epoch 2 3 4 5 --eval -ct 0.05 --distributed --sybn (--resume weights/ucf24/yowo_v3_large/yowo_v3_large_epoch_1.pth) (--untrimmed_trainning) (--track_mode)

Test TAN

  • Frame-mAP:
python eval.py --cuda -d ucf24 --data_root /data1/su/datasets/UCF24-YOWO/ -tbs 16 -v tan_large --weight weights/ucf24/tan_large/tan_large_epoch_0.pth -ct 0.05 --cal_frame_mAP
  • Video mAP:
python eval.py --cuda -d ucf24 --data_root /data1/su/datasets/UCF24-YOWO/ -tbs 16 -v tan_large --weight weights/ucf24/tan_large/tan_large_epoch_0.pth -ct 0.05 --cal_video_mAP --link_method viterbi

Note

Model weights and detection results can be downloaded from the cloud drive link below. Link: https://pan.baidu.com/s/1j4890Y6rtzycWG_jQeyd-Q?pwd=m5xd password: m5xd

Currently, only part of the code is released. The complete code will be released after the paper is accepted.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages