This repository contains the source code for the following paper:
Versatile Behavior Diffusion for Generalized Traffic Agent Simulation
Zhiyu Huang1,*, Zixu Zhang2,*, Ameya Vaidya2, Yuxiao Chen3, Chen Lv1, and Jaime Fernández Fisac2
1 Nanyang Technological University, 2 Princeton University, 3 NVIDIA Research
To set up the required environment, execute the following commands:
conda env create -n vbd -f environment.yml
conda activate vbd
# Install waymax from source
pip install git+https://github.com/waymo-research/waymax.git@main#egg=waymo-waymax
pip install -e .
Download the Waymo Open Motion Dataset from Waymo Open Motion Dataset. Please use version V1.2 tf_example data to work with Waymax.
Preprocess the dataset using the following command:
python script/extract_data.py \
--data_dir /path/to/waymo_open_motion_dataset_dir \
--save_dir /path/to/data_save_dir \
--num_workers 16 \
--save_raw # Extract Waymax Scenario for visualization
Make sure to process training and validation data separately.
To train the VBD model, use the following command:
python script/train.py --cfg config/VBD.yaml --num_gpus 8
Update the VBD.yaml
configuration file with appropriate parameters, such as the paths to the training and validation datasets.
Run the following command to test the model in closed-loop simulation:
python script/test.py --test_set /path/to/data --model_path ./train_log/VBD/model.pth --save_simulation
Ensure that both --test_set
and --model_path
parameters are provided. The test_set
parameter should point to the raw tf_example data file.
Explore the following examples for different use cases:
If you find our repo or our paper useful, please use the following citation:
@article{huang2024versatile,
title={Versatile Behavior Diffusion for Generalized Traffic Agent Simulation},
author={Huang, Zhiyu and Zhang, Zixu and Vaidya, Ameya and Chen, Yuxiao and Lv, Chen and Fisac, Jaime Fern{\'a}ndez},
journal={arXiv preprint arXiv:2404.02524},
year={2024}
}