Skip to content

Commit

Permalink
build based on 1eabc3c
Browse files Browse the repository at this point in the history
  • Loading branch information
Documenter.jl committed Dec 10, 2024
1 parent dd25382 commit 4fb38c1
Show file tree
Hide file tree
Showing 37 changed files with 74 additions and 74 deletions.
2 changes: 1 addition & 1 deletion previews/PR342/.documenter-siteinfo.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"documenter":{"julia_version":"1.10.7","generation_timestamp":"2024-12-09T15:44:10","documenter_version":"1.8.0"}}
{"documenter":{"julia_version":"1.10.7","generation_timestamp":"2024-12-10T01:16:03","documenter_version":"1.8.0"}}
2 changes: 1 addition & 1 deletion previews/PR342/examples/01_LSWT_CoRh2O4.html
Original file line number Diff line number Diff line change
Expand Up @@ -41,4 +41,4 @@
res = powder_average(cryst, radii, 2000) do qs
intensities(swt, qs; energies, kernel)
end
plot_intensities(res; units, saturation=1.0, title=&quot;CoRh₂O₄ Powder Average&quot;)</code></pre><img src="01_LSWT_CoRh2O4-4cbb7771.png" alt="Example block output"/><p>This result can be compared to experimental neutron scattering data from Fig. 5 of <a href="https://doi.org/10.1103/PhysRevB.96.064413">Ge et al.</a></p><img width="95%" src="https://raw.githubusercontent.com/SunnySuite/Sunny.jl/main/docs/src/assets/CoRh2O4_intensity.jpg"><h3 id="What&#39;s-next?"><a class="docs-heading-anchor" href="#What&#39;s-next?">What&#39;s next?</a><a id="What&#39;s-next?-1"></a><a class="docs-heading-anchor-permalink" href="#What&#39;s-next?" title="Permalink"></a></h3><ul><li>For more spin wave calculations of this type, browse the <a href="spinw/SW01_FM_Heseinberg_chain.html#SW01-FM-Heisenberg-chain">SpinW tutorials ported to Sunny</a>.</li><li>Spin wave theory neglects thermal fluctuations of the magnetic order. The <a href="02_LLD_CoRh2O4.html#2.-Landau-Lifshitz-dynamics-of-CoRhO-at-finite-*T*">next CoRh₂O₄ tutorial</a> demonstrates how to sample spins in thermal equilibrium, and measure dynamical correlations from the classical spin dynamics.</li><li>Sunny also offers features that go beyond the dipole approximation of a quantum spin via the theory of SU(<em>N</em>) coherent states. This can be especially useful for systems with strong single-ion anisotropy, as demonstrated in the <a href="03_LSWT_SU3_FeI2.html#3.-Multi-flavor-spin-wave-simulations-of-FeI">FeI₂ tutorial</a>.</li></ul></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../why.html">« Why Choose Sunny?</a><a class="docs-footer-nextpage" href="02_LLD_CoRh2O4.html">2. Landau-Lifshitz dynamics of CoRh₂O₄ at finite <em>T</em> »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.8.0 on <span class="colophon-date" title="Monday 9 December 2024 15:44">Monday 9 December 2024</span>. Using Julia version 1.10.7.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
plot_intensities(res; units, saturation=1.0, title=&quot;CoRh₂O₄ Powder Average&quot;)</code></pre><img src="01_LSWT_CoRh2O4-4cbb7771.png" alt="Example block output"/><p>This result can be compared to experimental neutron scattering data from Fig. 5 of <a href="https://doi.org/10.1103/PhysRevB.96.064413">Ge et al.</a></p><img width="95%" src="https://raw.githubusercontent.com/SunnySuite/Sunny.jl/main/docs/src/assets/CoRh2O4_intensity.jpg"><h3 id="What&#39;s-next?"><a class="docs-heading-anchor" href="#What&#39;s-next?">What&#39;s next?</a><a id="What&#39;s-next?-1"></a><a class="docs-heading-anchor-permalink" href="#What&#39;s-next?" title="Permalink"></a></h3><ul><li>For more spin wave calculations of this type, browse the <a href="spinw/SW01_FM_Heseinberg_chain.html#SW01-FM-Heisenberg-chain">SpinW tutorials ported to Sunny</a>.</li><li>Spin wave theory neglects thermal fluctuations of the magnetic order. The <a href="02_LLD_CoRh2O4.html#2.-Landau-Lifshitz-dynamics-of-CoRhO-at-finite-*T*">next CoRh₂O₄ tutorial</a> demonstrates how to sample spins in thermal equilibrium, and measure dynamical correlations from the classical spin dynamics.</li><li>Sunny also offers features that go beyond the dipole approximation of a quantum spin via the theory of SU(<em>N</em>) coherent states. This can be especially useful for systems with strong single-ion anisotropy, as demonstrated in the <a href="03_LSWT_SU3_FeI2.html#3.-Multi-flavor-spin-wave-simulations-of-FeI">FeI₂ tutorial</a>.</li></ul></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../why.html">« Why Choose Sunny?</a><a class="docs-footer-nextpage" href="02_LLD_CoRh2O4.html">2. Landau-Lifshitz dynamics of CoRh₂O₄ at finite <em>T</em> »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.8.0 on <span class="colophon-date" title="Tuesday 10 December 2024 01:16">Tuesday 10 December 2024</span>. Using Julia version 1.10.7.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
2 changes: 1 addition & 1 deletion previews/PR342/examples/02_LLD_CoRh2O4.html
Original file line number Diff line number Diff line change
Expand Up @@ -54,4 +54,4 @@
res = powder_average(cryst, radii, 350) do qs
intensities(sc, qs; energies, langevin.kT)
end
plot_intensities(res; units, title=&quot;Powder Average at 16 K&quot;)</code></pre><img src="02_LLD_CoRh2O4-dde6acc6.png" alt="Example block output"/></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="01_LSWT_CoRh2O4.html">« 1. Spin wave simulations of CoRh₂O₄</a><a class="docs-footer-nextpage" href="03_LSWT_SU3_FeI2.html">3. Multi-flavor spin wave simulations of FeI₂ »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.8.0 on <span class="colophon-date" title="Monday 9 December 2024 15:44">Monday 9 December 2024</span>. Using Julia version 1.10.7.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
plot_intensities(res; units, title=&quot;Powder Average at 16 K&quot;)</code></pre><img src="02_LLD_CoRh2O4-dde6acc6.png" alt="Example block output"/></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="01_LSWT_CoRh2O4.html">« 1. Spin wave simulations of CoRh₂O₄</a><a class="docs-footer-nextpage" href="03_LSWT_SU3_FeI2.html">3. Multi-flavor spin wave simulations of FeI₂ »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.8.0 on <span class="colophon-date" title="Tuesday 10 December 2024 01:16">Tuesday 10 December 2024</span>. Using Julia version 1.10.7.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
6 changes: 3 additions & 3 deletions previews/PR342/examples/03_LSWT_SU3_FeI2.html
Original file line number Diff line number Diff line change
Expand Up @@ -40,14 +40,14 @@
0 0 B]

<span class="sgr4"><span class="sgr1">Bond(1, 1, [1, 2, 0])</span></span>
Distance 7.0150136167509, coordination 6
Distance 7.015013617, coordination 6
Connects &#39;Fe&#39; at [0, 0, 0] to &#39;Fe&#39; at [1, 2, 0]
Allowed exchange matrix: [A 0 0
0 B D
0 D C]

<span class="sgr4"><span class="sgr1">Bond(1, 1, [1, 0, 1])</span></span>
Distance 7.8736818956572, coordination 12
Distance 7.873681896, coordination 12
Connects &#39;Fe&#39; at [0, 0, 0] to &#39;Fe&#39; at [1, 0, 1]
Allowed exchange matrix: [A F E
F B D
Expand Down Expand Up @@ -127,4 +127,4 @@
res = domain_average(cryst, path; rotations, weights) do path_rotated
intensities(swt, path_rotated; energies, kernel)
end
plot_intensities(res; units, colormap=:viridis, title=&quot;Domain Averaged Intensities&quot;)</code></pre><img src="03_LSWT_SU3_FeI2-804bd8e8.png" alt="Example block output"/><p>This result can be directly compared to experimental neutron scattering data from <a href="https://doi.org/10.1038/s41567-020-01110-1">Bai et al.</a></p><img src="https://raw.githubusercontent.com/SunnySuite/Sunny.jl/main/docs/src/assets/FeI2_intensity.jpg"><p>(The publication figure used a non-standard coordinate system to label the wave vectors.)</p><p>To get this agreement, the theory of SU(3) coherent states is essential. The lower band has large quadrupolar character, and arises from the strong easy-axis anisotropy of FeI₂.</p><p>An interesting exercise is to repeat the same study, but using <code>:dipole</code> mode instead of <code>:SUN</code>. That alternative choice would constrain the coherent state dynamics to the space of dipoles only, and the flat band of single-ion bound states would be missing.</p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="02_LLD_CoRh2O4.html">« 2. Landau-Lifshitz dynamics of CoRh₂O₄ at finite <em>T</em></a><a class="docs-footer-nextpage" href="04_GSD_FeI2.html">4. Generalized spin dynamics of FeI₂ at finite <em>T</em> »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.8.0 on <span class="colophon-date" title="Monday 9 December 2024 15:44">Monday 9 December 2024</span>. Using Julia version 1.10.7.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
plot_intensities(res; units, colormap=:viridis, title=&quot;Domain Averaged Intensities&quot;)</code></pre><img src="03_LSWT_SU3_FeI2-804bd8e8.png" alt="Example block output"/><p>This result can be directly compared to experimental neutron scattering data from <a href="https://doi.org/10.1038/s41567-020-01110-1">Bai et al.</a></p><img src="https://raw.githubusercontent.com/SunnySuite/Sunny.jl/main/docs/src/assets/FeI2_intensity.jpg"><p>(The publication figure used a non-standard coordinate system to label the wave vectors.)</p><p>To get this agreement, the theory of SU(3) coherent states is essential. The lower band has large quadrupolar character, and arises from the strong easy-axis anisotropy of FeI₂.</p><p>An interesting exercise is to repeat the same study, but using <code>:dipole</code> mode instead of <code>:SUN</code>. That alternative choice would constrain the coherent state dynamics to the space of dipoles only, and the flat band of single-ion bound states would be missing.</p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="02_LLD_CoRh2O4.html">« 2. Landau-Lifshitz dynamics of CoRh₂O₄ at finite <em>T</em></a><a class="docs-footer-nextpage" href="04_GSD_FeI2.html">4. Generalized spin dynamics of FeI₂ at finite <em>T</em> »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.8.0 on <span class="colophon-date" title="Tuesday 10 December 2024 01:16">Tuesday 10 December 2024</span>. Using Julia version 1.10.7.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
2 changes: 1 addition & 1 deletion previews/PR342/examples/04_GSD_FeI2.html
Original file line number Diff line number Diff line change
Expand Up @@ -86,4 +86,4 @@
res = intensities(sc, qpath; energies, langevin.kT)
plot_intensities(res; colorrange=(0.0, 1.0), title=&quot;Intensities at T = 2.3 K&quot;)</code></pre><img src="04_GSD_FeI2-032e320c.png" alt="Example block output"/><p>One can also view the intensity along a <a href="../library.html#Sunny.q_space_grid"><code>q_space_grid</code></a> for a fixed energy value. Alternatively, use <a href="../library.html#Sunny.intensities_static"><code>intensities_static</code></a> to integrate over all available energies.</p><pre><code class="language-julia hljs">grid = q_space_grid(cryst, [1, 0, 0], range(-1.5, 1.5, 300), [0, 1, 0], (-1.5, 1.5); orthogonalize=true)
res = intensities(sc, grid; energies=[3.5], langevin.kT)
plot_intensities(res; title=&quot;Intensity slice at ω = 3.5 meV&quot;)</code></pre><img src="04_GSD_FeI2-632cab55.png" alt="Example block output"/></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="03_LSWT_SU3_FeI2.html">« 3. Multi-flavor spin wave simulations of FeI₂</a><a class="docs-footer-nextpage" href="05_MC_Ising.html">5. Monte Carlo sampling of the Ising model »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.8.0 on <span class="colophon-date" title="Monday 9 December 2024 15:44">Monday 9 December 2024</span>. Using Julia version 1.10.7.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
plot_intensities(res; title=&quot;Intensity slice at ω = 3.5 meV&quot;)</code></pre><img src="04_GSD_FeI2-632cab55.png" alt="Example block output"/></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="03_LSWT_SU3_FeI2.html">« 3. Multi-flavor spin wave simulations of FeI₂</a><a class="docs-footer-nextpage" href="05_MC_Ising.html">5. Monte Carlo sampling of the Ising model »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.8.0 on <span class="colophon-date" title="Tuesday 10 December 2024 01:16">Tuesday 10 December 2024</span>. Using Julia version 1.10.7.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
Loading

0 comments on commit 4fb38c1

Please sign in to comment.