Skip to content

Commit

Permalink
build based on c12616f
Browse files Browse the repository at this point in the history
  • Loading branch information
Documenter.jl committed Jan 4, 2024
1 parent c79e9b4 commit 5fd0cdb
Show file tree
Hide file tree
Showing 21 changed files with 49 additions and 54 deletions.
2 changes: 1 addition & 1 deletion dev/.documenter-siteinfo.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"documenter":{"julia_version":"1.9.4","generation_timestamp":"2024-01-03T22:07:51","documenter_version":"1.2.1"}}
{"documenter":{"julia_version":"1.9.4","generation_timestamp":"2024-01-04T15:39:54","documenter_version":"1.2.1"}}
6 changes: 2 additions & 4 deletions dev/assets/notebooks/01_LSWT_SU3_FeI2.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -733,14 +733,12 @@
"The full SU(_N_) coherent state dynamics, with appropriate quantum correction\n",
"factors, can be useful to model finite temperature scattering data. In\n",
"particular, it captures certain anharmonic effects due to thermal\n",
"fluctuations. See our [generalized spin dynamics tutorial](@ref \"4.\n",
"Generalized spin dynamics of FeI₂ at finite *T*\").\n",
"fluctuations. See our generalized spin dynamics tutorial.\n",
"\n",
"The classical dynamics is also a good starting point to study non-equilibrium\n",
"phenomena. Empirical noise and damping terms can be used to model [coupling to\n",
"a thermal bath](https://arxiv.org/abs/2209.01265). This yields a Langevin\n",
"dynamics of SU(_N_) coherent states. Our [dynamical SU(_N_) quench](@ref \"6.\n",
"Dynamical quench into CP² skyrmion liquid\") tutorial illustrates how a\n",
"dynamics of SU(_N_) coherent states. Our dynamical SU(_N_) quench tutorial illustrates how a\n",
"temperature quench can give rise to novel liquid phase of CP² skyrmions."
],
"metadata": {}
Expand Down
3 changes: 1 addition & 2 deletions dev/assets/notebooks/03_LLD_CoRh2O4.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -26,8 +26,7 @@
{
"cell_type": "markdown",
"source": [
"Construct the system as in the previous [CoRh₂O₄ tutorial](@ref \"2. Spin wave\n",
"simulations of CoRh₂O₄\"). After optimization, the system will be in an\n",
"Construct the system as in the previous CoRh₂O₄ tutorial. After optimization, the system will be in an\n",
"unfrustrated antiferromagnetic ground state."
],
"metadata": {}
Expand Down
6 changes: 2 additions & 4 deletions dev/assets/notebooks/04_GSD_FeI2.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,7 @@
{
"cell_type": "markdown",
"source": [
"In the [previous FeI₂ tutorial](@ref \"1. Multi-flavor spin wave simulations of\n",
"FeI₂ (Showcase)\"), we used multi-flavor spin wave theory to calculate the\n",
"In the previous FeI₂ tutorial\"), we used multi-flavor spin wave theory to calculate the\n",
"dynamical structure factor. Here, we perform a similar calculation using a\n",
"[generalized classical spin dynamics](https://arxiv.org/abs/2209.01265) that\n",
"captures the coupled dynamics of spin dipoles and quadrupoles for\n",
Expand Down Expand Up @@ -50,8 +49,7 @@
" state.\n",
"3. Use the correlation data to compute scattering intensities.\n",
"\n",
"To begin, please follow our [previous tutorial](@ref \"1. Multi-flavor spin\n",
"wave simulations of FeI₂ (Showcase)\") to initialize a FeI₂ `sys` with lattice\n",
"To begin, please follow our previous tutorial\") to initialize a FeI₂ `sys` with lattice\n",
"dimensions $4×4×4$."
],
"metadata": {}
Expand Down
2 changes: 1 addition & 1 deletion dev/examples/01_LSWT_SU3_FeI2.html
Original file line number Diff line number Diff line change
Expand Up @@ -156,4 +156,4 @@
fig = Figure()
ax = Axis(fig[1,1]; xlabel="Momentum (r.l.u.)", ylabel="Energy (meV)", xticks, xticklabelrotation=π/6)
heatmap!(ax, 1:size(is_averaged, 1), energies, is_averaged)
fig</code></pre><img src="01_LSWT_SU3_FeI2-5ad5f204.png" alt="Example block output"/><p>This result can be directly compared to experimental neutron scattering data from <a href="https://doi.org/10.1038/s41567-020-01110-1">Bai et al.</a></p><img src="https://raw.githubusercontent.com/SunnySuite/Sunny.jl/main/docs/src/assets/FeI2_intensity.jpg"><p>(The publication figure accidentally used a non-standard coordinate system to label the wave vectors.)</p><p>To get this agreement, the use of SU(3) coherent states is essential. In other words, we needed a theory of multi-flavored bosons. The lower band has large quadrupolar character, and arises from the strong easy-axis anisotropy of FeI₂. By setting <code>mode = :SUN</code>, the calculation captures this coupled dipole-quadrupole dynamics.</p><p>An interesting exercise is to repeat the same study, but using <code>mode = :dipole</code> instead of <code>:SUN</code>. That alternative choice would constrain the coherent state dynamics to the space of dipoles only.</p><p>The full dynamical spin structure factor (DSSF) can be retrieved as a <span>$3×3$</span> matrix with the <a href="../library.html#Sunny.dssf-Tuple{SpinWaveTheory, Any}"><code>dssf</code></a> function, for a given path of <span>$𝐪$</span>-vectors.</p><pre><code class="language-julia hljs">disp, is = dssf(swt, path);</code></pre><p>The first output <code>disp</code> is identical to that obtained from <code>dispersion</code>. The second output <code>is</code> contains a list of <span>$3×3$</span> matrix of intensities. For example, <code>is[q,n][2,3]</code> yields the <span>$(ŷ,ẑ)$</span> component of the structure factor intensity for <code>nth</code> mode at the <code>q</code>th wavevector in the <code>path</code>.</p><h2 id="What&#39;s-next?"><a class="docs-heading-anchor" href="#What&#39;s-next?">What&#39;s next?</a><a id="What&#39;s-next?-1"></a><a class="docs-heading-anchor-permalink" href="#What&#39;s-next?" title="Permalink"></a></h2><p>The multi-boson linear spin wave theory, applied above, can be understood as the quantization of a certain generalization of the Landau-Lifshitz spin dynamics. Rather than dipoles, this dynamics takes places on the space of <a href="https://arxiv.org/abs/2106.14125">SU(<em>N</em>) coherent states</a>.</p><p>The full SU(<em>N</em>) coherent state dynamics, with appropriate quantum correction factors, can be useful to model finite temperature scattering data. In particular, it captures certain anharmonic effects due to thermal fluctuations. See our <a href="04_GSD_FeI2.html#4.-Generalized-spin-dynamics-of-FeI-at-finite-*T*">generalized spin dynamics tutorial</a>.</p><p>The classical dynamics is also a good starting point to study non-equilibrium phenomena. Empirical noise and damping terms can be used to model <a href="https://arxiv.org/abs/2209.01265">coupling to a thermal bath</a>. This yields a Langevin dynamics of SU(<em>N</em>) coherent states. Our <a href="06_CP2_Skyrmions.html#6.-Dynamical-quench-into-CP-skyrmion-liquid">dynamical SU(<em>N</em>) quench</a> tutorial illustrates how a temperature quench can give rise to novel liquid phase of CP² skyrmions.</p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../index.html">« Overview</a><a class="docs-footer-nextpage" href="02_LSWT_CoRh2O4.html">2. Spin wave simulations of CoRh₂O₄ »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="auto">Automatic (OS)</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.2.1 on <span class="colophon-date" title="Wednesday 3 January 2024 22:07">Wednesday 3 January 2024</span>. Using Julia version 1.9.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
fig</code></pre><img src="01_LSWT_SU3_FeI2-5ad5f204.png" alt="Example block output"/><p>This result can be directly compared to experimental neutron scattering data from <a href="https://doi.org/10.1038/s41567-020-01110-1">Bai et al.</a></p><img src="https://raw.githubusercontent.com/SunnySuite/Sunny.jl/main/docs/src/assets/FeI2_intensity.jpg"><p>(The publication figure accidentally used a non-standard coordinate system to label the wave vectors.)</p><p>To get this agreement, the use of SU(3) coherent states is essential. In other words, we needed a theory of multi-flavored bosons. The lower band has large quadrupolar character, and arises from the strong easy-axis anisotropy of FeI₂. By setting <code>mode = :SUN</code>, the calculation captures this coupled dipole-quadrupole dynamics.</p><p>An interesting exercise is to repeat the same study, but using <code>mode = :dipole</code> instead of <code>:SUN</code>. That alternative choice would constrain the coherent state dynamics to the space of dipoles only.</p><p>The full dynamical spin structure factor (DSSF) can be retrieved as a <span>$3×3$</span> matrix with the <a href="../library.html#Sunny.dssf-Tuple{SpinWaveTheory, Any}"><code>dssf</code></a> function, for a given path of <span>$𝐪$</span>-vectors.</p><pre><code class="language-julia hljs">disp, is = dssf(swt, path);</code></pre><p>The first output <code>disp</code> is identical to that obtained from <code>dispersion</code>. The second output <code>is</code> contains a list of <span>$3×3$</span> matrix of intensities. For example, <code>is[q,n][2,3]</code> yields the <span>$(ŷ,ẑ)$</span> component of the structure factor intensity for <code>nth</code> mode at the <code>q</code>th wavevector in the <code>path</code>.</p><h2 id="What&#39;s-next?"><a class="docs-heading-anchor" href="#What&#39;s-next?">What&#39;s next?</a><a id="What&#39;s-next?-1"></a><a class="docs-heading-anchor-permalink" href="#What&#39;s-next?" title="Permalink"></a></h2><p>The multi-boson linear spin wave theory, applied above, can be understood as the quantization of a certain generalization of the Landau-Lifshitz spin dynamics. Rather than dipoles, this dynamics takes places on the space of <a href="https://arxiv.org/abs/2106.14125">SU(<em>N</em>) coherent states</a>.</p><p>The full SU(<em>N</em>) coherent state dynamics, with appropriate quantum correction factors, can be useful to model finite temperature scattering data. In particular, it captures certain anharmonic effects due to thermal fluctuations. See our <a href="04_GSD_FeI2.html#4.-Generalized-spin-dynamics-of-FeI-at-finite-*T*">generalized spin dynamics tutorial</a>.</p><p>The classical dynamics is also a good starting point to study non-equilibrium phenomena. Empirical noise and damping terms can be used to model <a href="https://arxiv.org/abs/2209.01265">coupling to a thermal bath</a>. This yields a Langevin dynamics of SU(<em>N</em>) coherent states. Our <a href="06_CP2_Skyrmions.html#6.-Dynamical-quench-into-CP-skyrmion-liquid">dynamical SU(<em>N</em>) quench</a> tutorial illustrates how a temperature quench can give rise to novel liquid phase of CP² skyrmions.</p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../index.html">« Overview</a><a class="docs-footer-nextpage" href="02_LSWT_CoRh2O4.html">2. Spin wave simulations of CoRh₂O₄ »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="auto">Automatic (OS)</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.2.1 on <span class="colophon-date" title="Thursday 4 January 2024 15:39">Thursday 4 January 2024</span>. Using Julia version 1.9.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
2 changes: 1 addition & 1 deletion dev/examples/02_LSWT_CoRh2O4.html
Original file line number Diff line number Diff line change
Expand Up @@ -60,4 +60,4 @@
fig = Figure()
ax = Axis(fig[1,1]; xlabel=&quot;Q (Å⁻¹)&quot;, ylabel=&quot;ω (meV)&quot;)
heatmap!(ax, radii, energies, output, colormap=:gnuplot2)
fig</code></pre><img src="02_LSWT_CoRh2O4-19eaaa6f.png" alt="Example block output"/><p>This result can be compared to experimental neutron scattering data from Fig. 5 of <a href="https://doi.org/10.1103/PhysRevB.96.064413">Ge et al.</a></p><img width="95%" src="https://raw.githubusercontent.com/SunnySuite/Sunny.jl/main/docs/src/assets/CoRh2O4_intensity.jpg"></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="01_LSWT_SU3_FeI2.html">« 1. Multi-flavor spin wave simulations of FeI₂ (Showcase)</a><a class="docs-footer-nextpage" href="03_LLD_CoRh2O4.html">3. Landau-Lifshitz dynamics of CoRh₂O₄ at finite <em>T</em> »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="auto">Automatic (OS)</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.2.1 on <span class="colophon-date" title="Wednesday 3 January 2024 22:07">Wednesday 3 January 2024</span>. Using Julia version 1.9.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
fig</code></pre><img src="02_LSWT_CoRh2O4-19eaaa6f.png" alt="Example block output"/><p>This result can be compared to experimental neutron scattering data from Fig. 5 of <a href="https://doi.org/10.1103/PhysRevB.96.064413">Ge et al.</a></p><img width="95%" src="https://raw.githubusercontent.com/SunnySuite/Sunny.jl/main/docs/src/assets/CoRh2O4_intensity.jpg"></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="01_LSWT_SU3_FeI2.html">« 1. Multi-flavor spin wave simulations of FeI₂ (Showcase)</a><a class="docs-footer-nextpage" href="03_LLD_CoRh2O4.html">3. Landau-Lifshitz dynamics of CoRh₂O₄ at finite <em>T</em> »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="auto">Automatic (OS)</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.2.1 on <span class="colophon-date" title="Thursday 4 January 2024 15:39">Thursday 4 January 2024</span>. Using Julia version 1.9.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
2 changes: 1 addition & 1 deletion dev/examples/03_LLD_CoRh2O4.html
Original file line number Diff line number Diff line change
Expand Up @@ -85,4 +85,4 @@
aspect = 1.4,
),
colorrange = (0, 20.0)
)</code></pre><img src="03_LLD_CoRh2O4-2e9c8c64.png" alt="Example block output"/></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="02_LSWT_CoRh2O4.html">« 2. Spin wave simulations of CoRh₂O₄</a><a class="docs-footer-nextpage" href="04_GSD_FeI2.html">4. Generalized spin dynamics of FeI₂ at finite <em>T</em> »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="auto">Automatic (OS)</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.2.1 on <span class="colophon-date" title="Wednesday 3 January 2024 22:07">Wednesday 3 January 2024</span>. Using Julia version 1.9.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
)</code></pre><img src="03_LLD_CoRh2O4-2e9c8c64.png" alt="Example block output"/></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="02_LSWT_CoRh2O4.html">« 2. Spin wave simulations of CoRh₂O₄</a><a class="docs-footer-nextpage" href="04_GSD_FeI2.html">4. Generalized spin dynamics of FeI₂ at finite <em>T</em> »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="auto">Automatic (OS)</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.2.1 on <span class="colophon-date" title="Thursday 4 January 2024 15:39">Thursday 4 January 2024</span>. Using Julia version 1.9.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
Loading

0 comments on commit 5fd0cdb

Please sign in to comment.