Skip to content

TheJokersThief/CartographerDSL

Repository files navigation

CircleCI

Cartographer DSL

A domain specific language for defining CircleCI pipelines.

Expand For Full Table Of Contents

Why??

YAML is fine at 100 lines, less so at 1,000 lines and almost impossible to maintain at 10,000 lines. Anchors provide some capacity to keep things DRY but they're clunky and don't do enough really.

Enter Cartographer DSL, a domain-specific language based on Jsonnet that gives you the power of a complete programming language.

Some of the benefits:

  • Config can be more condensed when appropriate (easier to view lots of config all at once)
  • Loops and variables make it easier to repeat and template steps

I'm also hoping to take some common patterns and turn them into templates/functions/reusable chunks.

I built this because I noticed CircleCI supported dynamic config generation, and I wanted more options than YAML to write my config.

Local Usage

Docker Image

export FILE_NAME=".circleci/_config.jsonnet"
docker run -it \
    -v "$(pwd):/project" thejokersthief/cartographer-dsl \
    cartographer-dsl --file $FILE_NAME

Running on CircleCI

Check out the .circleci folder for a living example.

The below config uses the setup ability for CircleCI pipelines to generate the config dynamically. You'll need to enable this for your project in the project settings under "Advanced", at the bottom of the page.

Then, put your Cartographer file in the .circleci/_config.jsonnet.

Finally, add the following .circleci/config.yml file:

version: 2.1
setup: true
orbs:
  continuation: circleci/[email protected]
jobs:
  generate-config:
    docker:
      - image: thejokersthief/cartographer-dsl:latest
    steps:
      - checkout
      - run:
          name: Generate Pipeline generated_config.yml file
          command: cartographer-dsl --file .circleci/_config.jsonnet > generated_config.yml
      - continuation/continue:
          parameters: '{}'
          configuration_path: generated_config.yml
workflows:
  setup-workflow:
    jobs:
      - generate-config:
          filters:
            branches:
              only:
                - /.*/
            tags:
              only:
                - /.*/

Examples

If you're looking to learn more about writing Jsonnet, there's a very nice tutorial on the official website.

Minimal

local dsl = import '_dsl.libsonnet';

local jobs = dsl.jobs;
local pipeline = dsl.pipeline;
local steps = dsl.steps;
local workflows = dsl.workflows;

pipeline.new(
    workflows=[
        workflows.new(
            'main', jobs=[
                workflows.job(
                    'build',
                    image="ubuntu:20.04",
                    steps=[
                        steps.checkout(),
                        steps.run('echo "Hello World!"', name='Hello, World'),
                    ]
                )
            ]
        ),
    ],
)

Docs: CircleCI

Pipeline

dsl.circleci.pipeline.new

Name Type Default
version string "2.1",
orbs Orb {}
workflows list[Workflows] []
executors list[Executors] []

Example:

local dsl = import '_dsl.libsonnet';

local jobs = dsl.jobs;
local pipeline = dsl.pipeline;
local steps = dsl.steps;
local workflows = dsl.workflows;

pipeline.new(
    workflows=[
        workflows.new(
            'main', jobs=[
                workflows.job(
                    'build',
                    image="ubuntu:20.04",
                    steps=[
                        steps.checkout(),
                        steps.run('echo "Hello World!"', name='Hello, World'),
                    ]
                )
            ]
        ),
    ],
)

Workflows

dsl.circleci.workflows.new

Name Type Default
name string -
jobs list[Job] -
local dsl = import '_dsl.libsonnet';
local workflows = dsl.workflows;

workflows.new(
    "example-workflow",
    jobs=[ ... ]
)

Job

dsl.circleci.workflows.job

Name Type Default
name string -
requires list[string] []
context list[string] []
filters Filter {}
matrix Matrix {}
when string null
steps list[Step] []
image string null
executor string docker
executor_options Executor {}
shell string null
parameters dict[string]string {}
working_directory string null
parallelism integer 1
environment dict[string]string {}
resource_class string null
circleci_ip_ranges bool false
local dsl = import '_dsl.libsonnet';

local steps = dsl.steps;
local workflows = dsl.workflows;

workflows.job(
    'build',
    image="ubuntu:20.04",
    steps=[
        steps.checkout(),
    ]
)

Job Executor Options

dsl.circleci.executors.[docker, machine, macos, windows]

Filter: Branches

dsl.circleci.workflows.filter_branches

Name Type Default
only list[string] []
ignore list[string] []
local dsl = import '_dsl.libsonnet';
local workflows = dsl.workflows;

workflows.new(
    "example-workflow",
    jobs=[
        workflows.job(
            name='example-job',
            requires=['another-job'],
            filters=workflows.filters(
                only=['main']
            )
        )
    ]
)

Filter: Tags

dsl.circleci.workflows.filter_tags

Name Type Default
only list[string] []
ignore list[string] []
local dsl = import '_dsl.libsonnet';
local workflows = dsl.workflows;

workflows.new(
    "example-workflow",
    jobs=[
        workflows.job(
            name='example-job',
            requires=['another-job'],
            filters=workflows.filters(
                only=['/v1.*/'],
                ignore=['/beta-.*/']
            )
        )
    ]
)

Multiple Filters

local dsl = import '_dsl.libsonnet';
local workflows = dsl.workflows;

workflows.new(
    "example-workflow",
    jobs=[
        workflows.job(
            name='example-job',
            requires=['another-job'],
            filters=(
                workflows.filters(
                    only=['/v1.*/'],
                    ignore=['/beta-.*/']
                )
                + workflows.filters(
                    only=['main']
                )
            )
        )
    ]
)

Matrix

dsl.circleci.workflows.matrix

Name Type Default
alias string null
parameters dict[string]string {}
exclude list[string] []
local dsl = import '_dsl.libsonnet';
local workflows = dsl.workflows;

workflows.new(
    "example-workflow",
    jobs=[
        workflows.job(
            name='example-job',
            matrix=workflows.matrix(
                parameters={
                    version: ["0.1", "0.2", "0.3"]
                    platform: ["macos", "windows", "linux"]
                }
            )
        )
    ]
)

Docker

dsl.circleci.executors.docker

Name Type Default
image string -
name string null
entrypoint string null
command string null
user string null
environment dict[string]string {}
auth dict[string]string {}
aws_auth dict[string]string {}
local dsl = import '_dsl.libsonnet';
local jobs = dsl.jobs;
local executors = dsl.executors;

jobs.new(
    'build',
    executor="docker",
    executor_options=executors.docker(
        image="ubuntu:20.04",
        auth={'username': 'example', 'password': 'example'}
    ),
    steps=[
        steps.checkout(),
        steps.run('echo "Hello World!"', name='Hello, World'),
    ]
),

Machine

dsl.circleci.executors.machine

Name Type Default
image string -
docker_layer_caching bool false
local dsl = import '_dsl.libsonnet';
local jobs = dsl.jobs;
local executors = dsl.executors;

jobs.new(
    'build',
    executor="machine"
    executor_options=executors.machine(image='ubuntu-2004:202201-02')
    steps=[
        steps.checkout(),
        steps.run('echo "Hello World!"', name='Hello, World'),
    ]
),

MacOS

dsl.circleci.executors.macos

Name Type Default
xcode string -
local dsl = import '_dsl.libsonnet';
local jobs = dsl.jobs;

jobs.new(
    'build',
    executor="macos"
    executor_options=executors.macos('12.5.1')
    steps=[
        steps.checkout(),
        steps.run('echo "Hello World!"', name='Hello, World'),
    ]
),

Windows

dsl.circleci.executors.windows

The windows executor has no options.

Custom Executor (e.g. from an orb)

local dsl = import '_dsl.libsonnet';
local jobs = dsl.jobs;


// orbs.new({ python: 'circleci/[email protected]' })

jobs.new(
    'build',
    executor="python/default"
    steps=[
        steps.checkout(),
        steps.run('echo "Hello World!"', name='Hello, World'),
    ]
),

Steps

run

dsl.circleci.steps.run

Name Type Default
command string -
name string null
shell string null
environment dict[string]string {}
background bool false
working_directory string "."
no_output_timeout string "10m"
when string dict
local dsl = import '_dsl.libsonnet';
local steps = dsl.steps;

steps.run('echo "Hello, World!", no_output_timeout="30m)

when

Name Type Default
steps list[Step] -
when string dict

dsl.circleci.steps.when

local dsl = import '_dsl.libsonnet';
local steps = dsl.steps;
local const = dsl.constants;

steps.when(
    condition={
        'equal': ['my-fave-schedule', const.pipeline_values.schedule_name]
    },
    steps=[steps.run('echo "This is my favourite schedule!"')]
)

unless

dsl.circleci.steps.unless

Name Type Default
steps list[Step] -
when string dict
local dsl = import '_dsl.libsonnet';
local steps = dsl.steps;

steps.unless(
    condition={
        'equal': ['my-fave-schedule', const.pipeline_values.schedule_name]
    },
    steps=[steps.run('echo "This is my favourite schedule!"')]
)

checkout

dsl.circleci.steps.checkout

local dsl = import '_dsl.libsonnet';
local steps = dsl.steps;

steps.checkout()

setup_remote_docker

dsl.circleci.steps.setup_remote_docker

Name Type Default
version string '17.09.0-ce'
docker_layer_caching bool false
local dsl = import '_dsl.libsonnet';
local steps = dsl.steps;

steps.setup_remote_docker()

save_cache

dsl.circleci.steps.save_cache

Name Type Default
key string -
paths list[string] -
local dsl = import '_dsl.libsonnet';
local steps = dsl.steps;
local const = dsl.constants;

steps.save_cache(
    key='v1' + const.cache_vars.checksum('testfile.txt'),
    paths=['/cached/path']
)

restore_cache

dsl.circleci.steps.restore_cache

Name Type Default
key string -
local dsl = import '_dsl.libsonnet';
local steps = dsl.steps;
local const = dsl.constants;

steps.restore_cache('v1' + const.cache_vars.checksum('testfile.txt'))

store_artifacts

dsl.circleci.steps.store_artifacts

Name Type Default
path string -
destination string null
local dsl = import '_dsl.libsonnet';
local steps = dsl.steps;

steps.store_artifacts('/my-artifacts-folders/')

store_test_results

dsl.circleci.steps.store_test_results

Name Type Default
path string -
local dsl = import '_dsl.libsonnet';
local steps = dsl.steps;

steps.store_test_results('/my-artifacts-folders/')

persist_to_workspace

dsl.circleci.steps.persist_to_workspace

Name Type Default
root string -
paths list[string] -
local dsl = import '_dsl.libsonnet';
local steps = dsl.steps;

steps.persist_to_workspace(
    root='/my-project',
    paths=['important-folder']
)

attach_workspace

dsl.circleci.steps.attach_workspace

Name Type Default
at string -
local dsl = import '_dsl.libsonnet';
local steps = dsl.steps;

steps.attach_workspace('/my-project/important-folder')

add_ssh_keys

dsl.circleci.steps.add_ssh_keys

Name Type Default
fingerprints list[string] -
local dsl = import '_dsl.libsonnet';
local steps = dsl.steps;

steps.add_ssh_keys()

Executors

dsl.circleci.executors

Name Type Default
name string -
executor string -
executor_options Executor -
resource_class string null
shell string null
working_directory string null
environment dict[string]string {}
local dsl = import '_dsl.libsonnet';
local pipeline = dsl.pipeline;
local executors = dsl.executors;

pipeline.new(
    executors=[
        // You can define multiple images for the same executor by reusing the name
        executors.new("my-custom-executor", executor=docker, executor_options=executors.docker(image='ubuntu:20.04')),
        executors.new("my-custom-executor", executor=docker, executor_options=executors.docker(image='redis')),

        // Otherwise, they're all unique
        executors.new("my-other-executor", executor=docker, executor_options=executors.docker(image='redis')),
    ]
)

Orbs

local dsl = import '_dsl.libsonnet';
local pipeline = dsl.pipeline;
local orbs = dsl.orbs;

pipeline.new(
    orbs=orbs.new({ python: 'circleci/[email protected]' }),
    jobs=[
        jobs.new(
            'build-and-test',
            executor='python/default',
            steps=[
                steps.checkout(),
                'python/load-cache',
                steps.run('poetry install', name='Install dependencies'),
                'python/save-cache',
                steps.run('poetry run pytest tests', name='Tests'),
            ],
        ),
    ],
)

About

A jsonnet DSL for writing CircleCI configs

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published