Reproduce the mechanism mentioned in the 2017 paper.Implementation of Local Differential Private (LDP) mechanisms, just for fun. The experiment is based on a 2017 paper named "Locally Differentially Private Protocols for Frequencey Estimation".
Two steps:
- Verifying Correctness of Analysis: DE,SUE,OUE,SHE,BLH,OLH;
- Towards Real-world Estimation: RAPPOR(wait),BLH,OLH.
$ python3 main.py
Compare to Table 2 and Fig. 1(
- Vary
$\varepsilon$ ,$\varepsilon=0.5,1,1.5,...,5$:- DE:
$d=2,4,16,128,2048$ ; - OUE;
- DE:
- Vary
$\varepsilon$ ,$\varepsilon=0.5,1,1.5,...,5$, fixing$d=2^{10}$ :- DE, SHE, SUE, OUE, BLH, OLH.
- Vary
$d$ (fixing$\varepsilon=4$ ),$d=2^2,2^4,...,2^{14}$ :(Runs too slowly when$d=2^{16}$ )- DE, SUE, OUE;
- SHE, BLH, OLH;
- Vary
$\varepsilon$ (fixing$d=2^{10}$ ),$\varepsilon=0.5,1,1.5,...,5$:- DE, SUE, OUE;
- SHE, BLH, OLH.
下载完数据./data/kosarak.dat
后,
- 模拟用户点击,根据不同的LDP协议发送给服务器;
- 服务器收集了$n=8,000,000$,$d=41270$的数据后,使用aggregation,即estimate distribution(每个网页都要估计);
- 取前30个最高频度的计算平均方差。
写了drawFigure3.py
,但是运行速度太慢了。
No idea yet.
./data/kosarak.dat.gz
is from: http://fimi.uantwerpen.be/data/