Skip to content
forked from tfzhou/MATNet

Motion-Attentive Transition for Zero-Shot Video Object Segmentation (AAAI2020)

Notifications You must be signed in to change notification settings

YAwei666/MATNet

 
 

Repository files navigation

Motion-Attentive Transition for Zero-Shot Video Object Segmentation

PWC

PWC

UPDATES:

  • [2020/06/15] Update results for DAVIS-17 test-dev set!
  • [2020/03/04] Update results for DAVIS-17 validation set!
  • [2019/11/17] Codes released!

This is a PyTorch implementation of our MATNet for unsupervised video object segmentation.

Motion-Attentive Transition for Zero-Shot Video Object Segmentation. Paper

Tianfei Zhou, Shunzhou Wang, Yi Zhou, Yazhou Yao, Jianwu Li, Ling Shao, AAAI 2020, New York, USA.

Prerequisites

The training and testing experiments are conducted using PyTorch 1.0.1 with a single GeForce RTX 2080Ti GPU with 11GB Memory.

Other minor Python modules can be installed by running

pip install -r requirements.txt

Train

Clone

git clone --recursive https://github.com/tfzhou/MATNet.git

Download Datasets

In the paper, we use the following two public available dataset for training. Here are some steps to prepare the data:

  • DAVIS-17: we use all the data in the train subset of DAVIS-16. However, please download DAVIS-17 to fit the code. It will automatically choose the subset of DAVIS-16 for training.

  • YoutubeVOS-2018: we sample the training data every 10 frames in YoutubeVOS-2018. We use the dataset version with 6fps rather than 30fps.

  • Create soft links:

    cd data; ln -s your/davis17/path DAVIS2017; ln -s your/youtubevos/path YouTubeVOS_2018;

Prepare Edge Annotations

I have provided some matlab scripts to generate edge annotations from mask. Please run data/run_davis2017.m and data/run_youtube.m.

Prepare HED Results

I have provided the pytorch codes to generate HED results for the two datasets (see 3rdparty/pytorch-hed). Please run run_davis.py and run_youtube.py.

The codes are borrowed from https://github.com/sniklaus/pytorch-hed.

Prepare Optical Flow

I have provided the pytorch codes to generate optical flow results for the two datasets (see 3rdparty/pytorch-pwc). Please run run_davis_flow.py and run_youtubevos_flow.py.

The codes are borrowed from https://github.com/sniklaus/pytorch-pwc. Please follow the setup section to install cupy.

warning: Total size of optical flow results of Youtube-VOS is more than 30GB.

Train

Once all data is prepared, please run python train_MATNet.py for training.

Test

  1. Run python test_MATNet.py to obtain the saliency results on DAVIS-16 val set.
  2. Run python apply_densecrf_davis.py for binary segmentation results.

Segmentation Results

  1. The segmentation results on DAVIS-16 and Youtube-objects can be downloaded from Google Drive.
  2. The segmentation results on DAVIS-17 val can be downloaded from Google Drive. We achieved 58.6 in terms of Mean J&F.
  3. The segmentation results on DAVIS-17 test-dev can be downloaded from Google Drive. We achieved 59.8 in terms of Mean J&F. The method also achieved the second place in DAVIS-20 unsupervised object segmentation challenge. Please refer to paper for more details of our challenge solution.

Pretrained Models

The pre-trained model can be downloaded from Google Drive.

Citation

If you find MATNet useful for your research, please consider citing the following papers:

@inproceedings{zhou2020motion,
  title={Motion-Attentive Transition for Zero-Shot Video Object Segmentation},
  author={Zhou, Tianfei and Wang, Shunzhou and Zhou, Yi and Yao, Yazhou and Li, Jianwu and Shao, Ling},
  booktitle={Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI)},
  year={2020},
  pages={13066--13073}
}

@article{zhou2020matnet,
  title={MATNet: Motion-Attentive Transition Network for Zero-Shot Video Object Segmentation},
  author={Zhou, Tianfei and Li, Jianwu and Wang, Shunzhou and Tao, Ran and Shen, Jianbing},
  journal={IEEE Transactions on Image Processing},
  volume={29},
  pages={8326-8338},
  year={2020}
}

@article{DAVIS2020-Unsupervised-2nd,
  author = {T. Zhou, W. Wang, Y. Yao, J. Shen},
  title = {Target-Aware Adaptive Tracking for Unsupervised Video Object Segmentation},
  journal = {The 2020 DAVIS Challenge on Video Object Segmentation - CVPR Workshops},
  year = {2020}
}

About

Motion-Attentive Transition for Zero-Shot Video Object Segmentation (AAAI2020)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 96.8%
  • MATLAB 3.2%