Include spatial neighborhood to improve the prediction accuracy of a predictive model using XGBoost algorithm.
To create the environment and install the required packages:
- open the anaconda promt
- cd to the location of the project
- run the Conda_Env_setup.bat file
- wait until the installation finish
- check the enviroment installation by typing:
- conda activate Dstorm_311
- conda list -n Dstorm_311
- The code runs under Python version 3.11 with below packages
- geopandas==0.14.1
- rasterio==1.3.9
- matplotlib==3.8.1
- scikit-learn==1.3.2
- numpy==1.26.2
- pickles==0.1.1
- pandas==2.1.3
- xgboost==2.0.2
- scipy==1.11.4
-
Combo_randomForest.py / Combo_XGBoost.py
- Random Search for tuning Spatial parameters (NAISS)
-
Feature_Selection_RF.py / Feature_Selection_XGBoost.py
- Dimentionality reduction and Feature Selection
-
GWML_ANN.py / GWML_RandomForest.py / GWML_XGBoost.py
- Binary Classification GWML
-
GWML_RandomForest_Australia.py / GWML_XGBoost_Australia.py
- Regression GWML
-
RandomFOrest_Hypertunning_Main_Dataset.py / XGBOost_Hypertunning_Main_Dataset.py
- Random Search for huper paramter tuning (NAISS)
-
Test_bandwidth_GWML_RandomForest.py / Test_bandwidth_GWML_XGBoost.py
- Bandwidth Exploration (NAISS)
-
Test_HyperParameters_GWML_XGBoost.py / Test_HyperParameters_GWML_XGBoost.py
- Hyper Parameter Exploration (NAISS)
-
Test_Test_GWML_RandomForest.py / Test_Test_GWML_XGBoost.py
- Data size Exploration (NAISS)
Bandwidth change effect on the accuracy and precision of the validation and test sets for Random Forest
left) SWML accuracy regarding bandwidth change. right) SWML precision regarding bandwidth change.
Bigger green circles indicate more accurate local models.
Elevation median was the most important feature in Global ML.
Upleft) Global ML accuracy for validation and test dataset. Upright) SWML accuracy for validation and test dataset. Bottomleft) Global ML precision for validation and test dataset. Bottomright) SWML precision for validation and test dataset.
Upleft) Global ML accuracy for validation and test dataset. Upright) SWML accuracy for validation and test dataset. Bottomleft) Global ML precision for validation and test dataset. Bottomright) SWML precision for validation and test dataset.