Link to the Paper - arXiv
- Linux-64
- Python 3.9
- PyTorch 1.10.1
- CPU or NVIDIA GPU + CUDA10.2 CuDNN7.5
- Create a conda environment and install required packages:
conda create -n <env> python=3.9
conda activate <env>
pip install -r requirements.txt
Download the Mini-imagenet and notMNIST datasets from Google Drive. Other datasets will be automatically downloaded.
For training, run the following command.
python run.py -exp <experiment_id>
To manually input number of runs, epochs and learning rate, run the following command:
python run.py -exp <experiment_id> -r <n_runs> -e <n_epochs> -lr <learning_rate>
For test, run the following command.
python test.py -exp <experiment_id>
If you wish to cite this project, feel free to use this BibTeX reference:
@misc{https://doi.org/10.48550/arxiv.2205.11367,
doi = {10.48550/ARXIV.2205.11367},
url = {https://arxiv.org/abs/2205.11367},
author = {Hossain, Md Sazzad and Saha, Pritom and Chowdhury, Townim Faisal and Rahman, Shafin and Rahman, Fuad and Mohammed, Nabeel},
keywords = {Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Rethinking Task-Incremental Learning Baselines},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}