Skip to content

Commit

Permalink
[examples] Add conv2d gpu tranform example.
Browse files Browse the repository at this point in the history
  • Loading branch information
matrix72c committed Dec 3, 2024
1 parent c3e9d6a commit 6959c2f
Show file tree
Hide file tree
Showing 3 changed files with 357 additions and 0 deletions.
12 changes: 12 additions & 0 deletions examples/BuddyGPU/conv2d.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
!input_tensor_t = tensor<1x128x66x66xf32>
!weight_tensor_t = tensor<256x128x3x3xf32>
!output_tensor_t = tensor<1x256x64x64xf32>

func.func @conv_2d_nchw_fchw(%in: !input_tensor_t, %wei: !weight_tensor_t,
%out: !output_tensor_t) -> !output_tensor_t {
%res = linalg.conv_2d_nchw_fchw
{dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> }
ins(%in, %wei: !input_tensor_t, !weight_tensor_t)
outs(%out: !output_tensor_t) -> !output_tensor_t
return %res : !output_tensor_t
}
6 changes: 6 additions & 0 deletions examples/BuddyGPU/makefile
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,12 @@ buddy-gpu-matmul-lower:
-transform-interpreter="entry-point=codegen" \
-o log.mlir

buddy-gpu-conv2d-lower:
@${BUDDY_OPT} conv2d.mlir \
-transform-preload-library="transform-library-paths=transform-conv2d.mlir" \
-transform-interpreter="entry-point=codegen" \
-o log.mlir

buddy-gpu-matmul:
@${BUDDY_OPT} matmul.mlir -transform-preload-library="transform-library-paths=transform.mlir" -transform-interpreter="entry-point=codegen" | \
${BUDDY_OPT} --pass-pipeline='builtin.module(func.func(nvgpu-optimize-shared-memory))' | \
Expand Down
339 changes: 339 additions & 0 deletions examples/BuddyGPU/transform-conv2d.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,339 @@
module attributes {transform.with_named_sequence} {

transform.named_sequence @__transform_main(
%arg0: !transform.any_op,
%conv: !transform.op<"linalg.conv_2d_nchw_fchw">) {

transform.debug.emit_remark_at %conv, "Input conv" : !transform.op<"linalg.conv_2d_nchw_fchw">

%conv2, %loops2:5 = transform.structured.tile_using_for %conv
// N, F, OH, OW, C, KH, KW
tile_sizes [1, 64, 1, 32, 16, 0, 0] // 16 canais , 32 colunas, 64 filtros, 2o, 1 tile de uma linha
interchange = [0, 4, 3, 2, 1] // 4 = F, 3: OH, 2:OW, 1:C
: (!transform.op<"linalg.conv_2d_nchw_fchw">)
-> (!transform.op<"linalg.conv_2d_nchw_fchw">, !transform.any_op,
!transform.any_op, !transform.any_op, !transform.any_op,
!transform.any_op)

transform.debug.emit_remark_at %conv2, "conv2" : !transform.op<"linalg.conv_2d_nchw_fchw">

%conv3, %loops3:2 = transform.structured.tile_using_for %conv2
// N, F, OH, OW, C, KH, KW
tile_sizes [0, 8, 0, 16, 0, 0, 0]
interchange = [1, 0]
: (!transform.op<"linalg.conv_2d_nchw_fchw">)
-> (!transform.op<"linalg.conv_2d_nchw_fchw">, !transform.any_op,
!transform.any_op)

transform.debug.emit_remark_at %conv3, "conv3" : !transform.op<"linalg.conv_2d_nchw_fchw">

%conv4, %matmul = transform.structured.convert_conv2d_to_img2col %conv3
: (!transform.op<"linalg.conv_2d_nchw_fchw">) -> (!transform.any_op, !transform.any_op)

transform.debug.emit_remark_at %conv4, "img2col" : !transform.any_op

transform.apply_patterns to %conv4 {
transform.apply_patterns.canonicalization
transform.apply_patterns.linalg.tiling_canonicalization
} : !transform.any_op

// Perform tiling for the grid.
// For the matrix multiplication of 5376x2048 and 2048x5376, the compilation
// strategy sets the tile size for grid-based partitioning to 128x256.
// This means that each [128, 2048] @ [2048, 256] matmul tile is computed within a GPU block,
// while multiple such blocks are computed in parallel across the grid.
// `tile_sizes` specify the dimensions of the tiled matmul result.
// `%tiled_op` is the tiled matmul operation within the `scf.forall` loop.
// `%forall_op` is the `scf.forall` loop that maintains tile information.
%tiled_op, %forall_op = transform.structured.tile_using_forall %conv4
tile_sizes [128, 256] (mapping = [#gpu.block<y>, #gpu.block<x>])
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)

// Perform canonicalization.
%1 = transform.structured.match ops{["func.func"]} in %arg0 : (!transform.any_op) -> !transform.any_op
transform.apply_patterns to %1 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.scf.for_loop_canonicalization
transform.apply_patterns.canonicalization
} : !transform.any_op
transform.apply_cse to %1 : !transform.any_op
%all_loops = transform.structured.match interface{LoopLikeInterface}
in %arg0
: (!transform.any_op) -> !transform.any_op
transform.apply_licm to %all_loops : !transform.any_op
transform.apply_patterns to %1 {
transform.apply_patterns.linalg.tiling_canonicalization
} : !transform.any_op

// Further tile the tiled matmul
// Tile the third dimension in matmul.
// [128, 2048] @ [2048, 256] matmul is further tiled into [128, 16] @ [16, 256] matmul.
%tiled_linalg_op, %loops = transform.structured.tile_using_for %tiled_op [0, 0, 16] : (!transform.any_op) -> (!transform.any_op, !transform.any_op)

// Create pad op and prepare for mapping to GPU.
// Nothing has changed in the operation.
%padded, %pad, %copy = transform.structured.pad %tiled_linalg_op {copy_back_op = "none", pack_paddings = [1, 1, 1], pad_to_multiple_of = [1, 1, 1], padding_dimensions = [0, 1, 2], padding_values = [0.000000e+00 : f32, 0.000000e+00 : f32, 0.000000e+00 : f32]} : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)

// Rewrite tensor.pad into linalg.copy.
%3 = transform.get_producer_of_operand %padded[0] : (!transform.any_op) -> !transform.any_op
%4 = transform.get_producer_of_operand %padded[1] : (!transform.any_op) -> !transform.any_op
%5 = transform.get_producer_of_operand %padded[2] : (!transform.any_op) -> !transform.any_op
%6 = transform.structured.rewrite_in_destination_passing_style %3 : (!transform.any_op) -> !transform.any_op
%7 = transform.structured.rewrite_in_destination_passing_style %4 : (!transform.any_op) -> !transform.any_op
%8 = transform.structured.rewrite_in_destination_passing_style %5 : (!transform.any_op) -> !transform.any_op

// Tile the linalg.copy op and map it to GPU thread level,
// such that the tiled matrix are copied to GPU shared memory.
// num_threads is different from tile_sizes used above,
// as it specifies the number of tile instead of the size of the tile.
// The first transform tile the [128, 16] into [4, 4],
// and the second transform tile the [16, 256] into [2, 16].
%tiled_op_0, %forall_op_1 = transform.structured.tile_using_forall %6 num_threads [32, 4](mapping = [#gpu.thread<linear_dim_1>, #gpu.thread<linear_dim_0>]) : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
%tiled_op_2, %forall_op_3 = transform.structured.tile_using_forall %7 num_threads [8, 16](mapping = [#gpu.thread<linear_dim_1>, #gpu.thread<linear_dim_0>]) : (!transform.any_op) -> (!transform.any_op, !transform.any_op)

// Tile the linalg.matmul op and map it to GPU warp level.
%tiled_op_4, %forall_op_5 = transform.structured.tile_using_forall %padded num_threads [2, 2](mapping = [#gpu.warp<y>, #gpu.warp<x>]) : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
// Tile the linalg.fill op and map it to GPU warp level.
%tiled_op_6, %forall_op_7 = transform.structured.tile_using_forall %fused_op num_threads [2, 2](mapping = [#gpu.warp<y>, #gpu.warp<x>]) : (!transform.any_op) -> (!transform.any_op, !transform.any_op)

// Perform canonicalization.
%9 = transform.structured.match ops{["func.func"]} in %arg0 : (!transform.any_op) -> !transform.any_op
transform.apply_patterns to %9 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.scf.for_loop_canonicalization
transform.apply_patterns.canonicalization
} : !transform.any_op
transform.apply_cse to %9 : !transform.any_op
%all_loops_2 = transform.structured.match interface{LoopLikeInterface}
in %9
: (!transform.any_op) -> !transform.any_op
transform.apply_licm to %all_loops_2 : !transform.any_op
transform.apply_patterns to %9 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.vector.lower_masked_transfers
} : !transform.any_op

// Perform vectorization.
// Vectorize the linalg.copy, linalg.fill, and linalg.matmul operations.
%10 = transform.structured.vectorize_children_and_apply_patterns %9 : (!transform.any_op) -> !transform.any_op

// Perform canonicalization.
transform.apply_patterns to %10 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.scf.for_loop_canonicalization
transform.apply_patterns.canonicalization
} : !transform.any_op
transform.apply_cse to %10 : !transform.any_op
%all_loops_3 = transform.structured.match interface{LoopLikeInterface}
in %10
: (!transform.any_op) -> !transform.any_op
transform.apply_licm to %all_loops_3 : !transform.any_op
transform.apply_patterns to %10 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.vector.lower_masked_transfers
} : !transform.any_op

// Match bufferization.alloc_tensors inside the forall op
%scf_forall = transform.structured.match ops{["scf.forall"]} attributes{mapping = [#gpu.block<y>, #gpu.block<x>]} in %arg0 : (!transform.any_op) -> !transform.any_op
%alloc_tensor_ops = transform.structured.match ops{["bufferization.alloc_tensor"]} in %scf_forall : (!transform.any_op) -> !transform.any_op

// Bufferize the alloc_tensor ops to memref.alloc ops.
// The memory_space attribute for GPU Dialect 0 means global memory, 3 means workgroup memory address, 5 means private memory address.
// According to https://discourse.llvm.org/t/rfc-memref-memory-shape-as-attribute/2229
%buffer, %new_ops = transform.structured.bufferize_to_allocation %alloc_tensor_ops {memory_space = 3 } : !transform.any_op

// Eliminate empty tensors and erase unnecessary inputs.
transform.structured.eliminate_empty_tensors %arg0 : !transform.any_op
%func_eras = transform.structured.match ops{["func.func"]} in %arg0 : (!transform.any_op) -> !transform.any_op
transform.apply_patterns to %func_eras {
transform.apply_patterns.linalg.erase_unnecessary_inputs
} : !transform.any_op

// Bufferize the remaining operations in one time.
%11 = transform.bufferization.one_shot_bufferize %arg0 { bufferize_function_boundaries = true, function_boundary_type_conversion = 1 : i32} : (!transform.any_op) -> !transform.any_op

// Erase dead alloc and stores.
%12 = transform.structured.match ops{["func.func"]} in %11 : (!transform.any_op) -> !transform.any_op
transform.memref.erase_dead_alloc_and_stores %12 : (!transform.any_op) -> ()

// Generate GPU launch.
%13 = transform.structured.match ops{["func.func"]} in %11 : (!transform.any_op) -> !transform.any_op
%gpu_launch = transform.gpu.map_forall_to_blocks %13 { generate_gpu_launch } : (!transform.any_op) -> !transform.any_op

// Rewrite bufferized scf.forall ops to distributed gpu.thread_id attribute.
%mapped = transform.gpu.map_nested_forall_to_threads %gpu_launch block_dims = [64, 2, 1] warp_size = 32 : (!transform.any_op) -> !transform.any_op

%15 = transform.structured.match ops{["func.func"]} in %11 : (!transform.any_op) -> !transform.any_op

// Removes unnecessary GPU barriers from the function.
// %15 = transform.buddy.eliminate_gpu_barriers %14 : (!transform.any_op) -> !transform.any_op

// Perform canonicalization.
transform.apply_patterns to %15 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.scf.for_loop_canonicalization
transform.apply_patterns.canonicalization
} : !transform.any_op
transform.apply_cse to %15 : !transform.any_op
%all_loops_4 = transform.structured.match interface{LoopLikeInterface}
in %15
: (!transform.any_op) -> !transform.any_op
transform.apply_licm to %all_loops_4 : !transform.any_op
transform.apply_patterns to %15 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.vector.lower_masked_transfers
} : !transform.any_op

// Identify static memory allocations within the given region,
// and move them to a higher level (hoisting).
transform.buddy.hoist_static_alloc %15 : (!transform.any_op) -> ()

// Collects patterns for folding memref aliasing ops (memref.subview) into consumer load/store ops (affine.load, memref.load, nvgpu.ldmatrix, vector.load, vector.transfer_read, affine.store, memref.store, etc.) and other ops (e.g., memref.subview).
transform.apply_patterns to %15 {
transform.apply_patterns.memref.fold_memref_alias_ops
} : !transform.any_op
// Collects patterns for extracting address computations from operations with memory accesses such that these memory accesses use only a base pointer.
transform.apply_patterns to %15 {
transform.apply_patterns.memref.extract_address_computations
} : !transform.any_op
// Perform canonicalization.
transform.apply_patterns to %15 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.scf.for_loop_canonicalization
transform.apply_patterns.canonicalization
} : !transform.any_op
transform.apply_cse to %15 : !transform.any_op
%all_loops_5 = transform.structured.match interface{LoopLikeInterface}
in %15
: (!transform.any_op) -> !transform.any_op
transform.apply_licm to %all_loops_5 : !transform.any_op
transform.apply_patterns to %15 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.vector.lower_masked_transfers
} : !transform.any_op

// Adds patterns that unroll vectors to a native tile size for GPUs with mma operations
transform.apply_patterns to %15 {
transform.apply_patterns.buddy.unroll_vectors_gpu_mma_sync
} : !transform.any_op

// Insert a gpu.barrier after a given scf.for loop
%16 = transform.structured.match ops{["scf.for"]} in %15 : (!transform.any_op) -> !transform.op<"scf.for">
// transform.buddy.synchronize_loop %16 : (!transform.op<"scf.for">) -> ()


transform.apply_patterns to %15 {
transform.apply_patterns.memref.fold_memref_alias_ops
} : !transform.any_op
transform.apply_cse to %15 : !transform.any_op

// Hoist vector.transfer_read / vector.transfer_write pairs out of immediately enclosing scf::ForOp iteratively
// Warning: Deprecated
%17 = transform.structured.hoist_redundant_vector_transfers %15 : (!transform.any_op) -> !transform.any_op

// Perform canonicalization.
transform.apply_patterns to %17 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.scf.for_loop_canonicalization
transform.apply_patterns.canonicalization
} : !transform.any_op
transform.apply_cse to %17 : !transform.any_op
%all_loops_6 = transform.structured.match interface{LoopLikeInterface}
in %17
: (!transform.any_op) -> !transform.any_op
transform.apply_licm to %all_loops_6 : !transform.any_op
transform.apply_patterns to %17 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.vector.lower_masked_transfers
} : !transform.any_op

// This converts slices of operations containing vector.contract op into
// mma operations, targetting warp level tensorcore operations.
transform.buddy.vector.vector_to_mma_conversion %17 {use_mma_sync} : (!transform.any_op) -> ()

// %18 = transform.buddy.eliminate_gpu_barriers %17 : (!transform.any_op) -> !transform.any_op

// Perform canonicalization.
transform.apply_patterns to %17 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.scf.for_loop_canonicalization
transform.apply_patterns.canonicalization
} : !transform.any_op
transform.apply_cse to %17 : !transform.any_op
%all_loops_7 = transform.structured.match interface{LoopLikeInterface}
in %17
: (!transform.any_op) -> !transform.any_op
transform.apply_licm to %all_loops_7 : !transform.any_op
transform.apply_patterns to %17 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.vector.lower_masked_transfers
} : !transform.any_op

%19 = transform.structured.match ops{["gpu.launch"]} in %17 : (!transform.any_op) -> !transform.any_op
%fwfa = transform.structured.match ops{["memref.alloc"]} in %19 : (!transform.any_op) -> !transform.op<"memref.alloc">

// Do multi-buffering/array expansion to remove dependencies on the temporary allocation between consecutive loop iterations.
transform.memref.multibuffer %fwfa {factor = 3 : i64, skip_analysis} : (!transform.op<"memref.alloc">) -> !transform.any_op

transform.apply_patterns to %17 {
transform.apply_patterns.vector.transfer_to_scf full_unroll = true
} : !transform.any_op
transform.apply_patterns to %17 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.scf.for_loop_canonicalization
transform.apply_patterns.canonicalization
} : !transform.any_op
transform.apply_cse to %17 : !transform.any_op
%all_loops_8 = transform.structured.match interface{LoopLikeInterface}
in %17
: (!transform.any_op) -> !transform.any_op
transform.apply_licm to %all_loops_8 : !transform.any_op
transform.apply_patterns to %17 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.vector.lower_masked_transfers
} : !transform.any_op

// Convert sync copies to shared memory to async.
// transform.buddy.create_async_groups %17 {use_mma_sync} : (!transform.any_op) -> ()
transform.apply_patterns to %17 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.scf.for_loop_canonicalization
transform.apply_patterns.canonicalization
transform.apply_patterns.memref.fold_memref_alias_ops
} : !transform.any_op
%all_loops_9 = transform.structured.match interface{LoopLikeInterface}
in %17
: (!transform.any_op) -> !transform.any_op
transform.apply_licm to %all_loops_9 : !transform.any_op
transform.apply_cse to %17 : !transform.any_op


%20 = transform.structured.match ops{["nvgpu.mma.sync"]} in %17 : (!transform.any_op) -> !transform.any_op
%21 = transform.get_parent_op %20 {deduplicate, op_name = "scf.for"} : (!transform.any_op) -> !transform.any_op
// This applies software pipelining to a given scf.for loop.
// The pipelining strategy will look for a copy to shared memory and pipeline it to overlap it with the rest of the loop.
// %22 = transform.buddy.pipeline_shared_memory_copies %21 {depth = 3 : i64, use_mma_sync, peel_epilogue} : (!transform.any_op) -> !transform.any_op

// Perform canonicalization.
transform.apply_patterns to %17 {
transform.apply_patterns.vector.lower_masks
} : !transform.any_op
transform.apply_patterns to %17 {
transform.apply_patterns.vector.materialize_masks
} : !transform.any_op
transform.apply_patterns to %17 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.scf.for_loop_canonicalization
transform.apply_patterns.canonicalization
transform.apply_patterns.memref.fold_memref_alias_ops
} : !transform.any_op

%all_loops_10 = transform.structured.match interface{LoopLikeInterface}
in %17
: (!transform.any_op) -> !transform.any_op
transform.apply_licm to %all_loops_10 : !transform.any_op
transform.apply_cse to %17 : !transform.any_op

transform.yield
}
} // module

0 comments on commit 6959c2f

Please sign in to comment.