End to end lightGBM regression model to predict house prices in Beijing
│
├── data/ <- The original, immutable data dump.
│
├── figures/ <- Figures saved by scripts or notebooks.
│
├── notebooks/ <- Jupyter notebooks. Naming convention is a short `-` delimited
│ description, a number (for ordering), and the creator's initials,
│ e.g. `initial-data-exploration-01-hg`.
│
├── output/ <- Manipulated data, logs, etc.
│
├── tests/ <- Unit tests.
│
├── price_prediction_model/ <- Python module with source code of this project.
│
├── environment.yml <- conda virtual environment definition file.
│
├── LICENSE
│
├── Makefile <- Makefile with commands like `make environment`
│
├── README.md <- The top-level README for developers using this project.
│
└── tox.ini <- tox file with settings for running tox; see tox.testrun.org
Project based on the cookiecutter data science project template.
Install the virtual environment with conda and activate it:
$ conda env create -f environment.yml
$ conda activate example-project
Install price_prediction_model
in the virtual environment:
$ pip install --editable .