-
Notifications
You must be signed in to change notification settings - Fork 9
/
density.cu
208 lines (195 loc) · 6.36 KB
/
density.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/**
* @author Christoph Schaefer [email protected]
*
* @section LICENSE
* Copyright (c) 2019 Christoph Schaefer
*
* This file is part of miluphcuda.
*
* miluphcuda is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* miluphcuda is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with miluphcuda. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "density.h"
#include "miluph.h"
#include "config_parameter.h"
#include "timeintegration.h"
#include "parameter.h"
#include "pressure.h"
#include "tree.h"
extern __device__ SPH_kernel kernel;
extern __device__ SPH_kernel wendlandc2_p;
#if SML_CORRECTION
extern __device__ void redo_NeighbourSearch(int particle_id, int *interactions);
#endif // SML_CORRECTION
// calculates the density of all particles via the kernel sum
// is also called for INTEGRATE_DENSITY to determine the densities of particles
// of materials with density_via_kernel_sum = 1 in material.cfg
__global__ void calculateDensity(int *interactions) {
int i;
int j;
int inc;
int ip;
int d;
double W;
double Wj;
double dx[DIM];
double dWdx[DIM];
double dWdr;
double rho;
double sml;
double tolerance;
#if SML_CORRECTION
double dhdrho, sml_omega,sml_omega_sum, r;
double f, df, h_new, h_init, rho_h;
//the proportionality constant (h_fact = 4.0) defines the average number of neighbours: [2D] noi = pi * h_fact^2, [3D] noi = 4/3 * pi * h_fact^3
double h_fact = 4.0;
#endif // SML_CORRECTION
inc = blockDim.x * gridDim.x;
for (i = threadIdx.x + blockIdx.x * blockDim.x; i < numParticles; i += inc) {
#if INTEGRATE_DENSITY
if (EOS_TYPE_IGNORE == matEOS[p_rhs.materialId[i]] || p_rhs.materialId[i] == EOS_TYPE_IGNORE || matdensity_via_kernel_sum[p_rhs.materialId[i]] < 1) {
continue;
}
#else
if (EOS_TYPE_IGNORE == matEOS[p_rhs.materialId[i]] || p_rhs.materialId[i] == EOS_TYPE_IGNORE) {
continue;
}
#endif // INTEGRATE_DENSITY
tolerance = 0.0;
int cnt = 0;
#if SML_CORRECTION
h_init = p.h[i];
h_new = 0.0;
/* // if Bisection method is used
double a = 0.0, b = 0.0, c = 0.0;
int bis_cnt = 0;
int bisection = 0; */
#endif // SML_CORRECTION
do {
#if SML_CORRECTION
sml_omega_sum = 0.0;
#endif // SML_CORRECTION
sml = p.h[i];
// self density is m_i W_ii
for (d = 0; d < DIM; d++) {
dx[d] = 0;
}
kernel(&W, dWdx, &dWdr, dx, sml);
#if SHEPARD_CORRECTION
W /= p_rhs.shepard_correction[i];
#endif
rho = p.m[i] * W;
if (rho == 0.0) {
printf("rho is %f W: %e \n", rho, W);
}
// sph sum for particle i
for (j = 0; j < p.noi[i]; j++) {
ip = interactions[i * MAX_NUM_INTERACTIONS + j];
if (EOS_TYPE_IGNORE == matEOS[p_rhs.materialId[ip]] || p_rhs.materialId[ip] == EOS_TYPE_IGNORE) {
continue;
}
#if (VARIABLE_SML || INTEGRATE_SML || DEAL_WITH_TOO_MANY_INTERACTIONS)
sml = 0.5*(p.h[i] + p.h[ip]);
#endif
dx[0] = p.x[i] - p.x[ip];
#if DIM > 1
dx[1] = p.y[i] - p.y[ip];
#if DIM > 2
dx[2] = p.z[i] - p.z[ip];
#endif
#endif
#if SML_CORRECTION
r = 0;
for (d = 0; d < DIM; d++) {
r += dx[d]*dx[d];
}
r = sqrt(r);
#endif // SML_CORRECTION
#if AVERAGE_KERNELS
kernel(&W, dWdx, &dWdr, dx, p.h[i]);
Wj = 0;
kernel(&Wj, dWdx, &dWdr, dx, p.h[j]);
# if SHEPARD_CORRECTION
W /= p_rhs.shepard_correction[i];
Wj /= p_rhs.shepard_correction[j];
# endif
W = 0.5 * (W + Wj);
#else
kernel(&W, dWdx, &dWdr, dx, sml);
# if SHEPARD_CORRECTION
W /= p_rhs.shepard_correction[i];
# endif
// contribution of interaction
#endif // AVERAGE_KERNELS
#if SML_CORRECTION
sml_omega_sum += p.m[ip] * (-1) * (DIM * W/sml + (r / sml) * dWdr);
#endif // SML_CORRECTION
rho += p.m[ip] * W;
}
#if SML_CORRECTION
rho_h = p.m[i] * pow(double(h_fact / p.h[i]), DIM);
dhdrho = -p.h[i] / (DIM * rho);
sml_omega = 1 - dhdrho * sml_omega_sum;
// Newton-Raphson method tolerance e-3 (Phantom)
f = rho_h - rho;
df = -DIM * rho / p.h[i] * sml_omega;
h_new = p.h[i] - f / df;
// arbitrary set limit for sml change
if (h_new > 1.2 * p.h[i]) {
h_new = 1.2 * p.h[i];
} else if (h_new < 0.8 * p.h[i]) {
h_new = 0.8 * p.h[i];
}
/*
//Bisection method (alternative to NR method)
if (cnt == 0 && h_new < 0) {
bisection = 1;
}
if (bisection == 1) {
if ((f/df) > 0) {
if(bis_cnt == 0) {
b = p.h[i];
} else {
b = c;
}
} else if((f/df) < 0) {
if(bis_cnt == 0) {
a = p.h[i];
b = 2.0 * a;
} else {
a = c;
}
}
c = 0.5 * (a + b);
h_init = p.h[i];
h_new = c;
bis_cnt++;
}
*/
tolerance = abs(h_new - p.h[i]) / h_init;
if (tolerance > 1e-3) {
if (h_new < 0){
printf("SML_CORRECTION: NEGATIVE SML!");
}
p.h[i] = h_new;
p.sml_omega[i] = sml_omega;
redo_NeighbourSearch(i, interactions);
cnt++;
}
#endif // SML_CORRECTION
} while (tolerance > 1e-3 && cnt < 10);
// write to global memory
p.rho[i] = rho;
}
}