-
Notifications
You must be signed in to change notification settings - Fork 9
/
tree.cu
1187 lines (1077 loc) · 33.8 KB
/
tree.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* @author Christoph Schaefer [email protected] and Thomas I. Maindl
*
* @section LICENSE
* Copyright (c) 2019 Christoph Schaefer
*
* This file is part of miluphcuda.
*
* miluphcuda is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* miluphcuda is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with miluphcuda. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "tree.h"
#include "timeintegration.h"
#include "config_parameter.h"
#include "parameter.h"
#include "miluph.h"
#include "pressure.h"
// do not iterate more than MAX_VARIABLE_SML_ITERATIONS times to get the desired number of interaction partners
// if VARIABLE_SML and FIXED_NOI is set
#define MAX_VARIABLE_SML_ITERATIONS 4
// tolerance value. if found number of interactions is as close as TOLERANCE_WANTED_NUMBER_OF_INTERACTIONS, we stop iterating
#define TOLERANCE_WANTED_NUMBER_OF_INTERACTIONS 5
__device__ int treeMaxDepth = 0;
extern __device__ double dt;
extern __device__ volatile double radius;
extern __device__ volatile int maxNodeIndex;
extern __device__ int blockCount;
extern __device__ double minx, maxx;
extern __device__ double miny, maxy;
#if DIM == 3
extern __device__ double minz, maxz;
#endif
extern __device__ int movingparticles;
extern __device__ int reset_movingparticles;
extern __constant__ volatile int *childList;
__device__ int childListIndex(int nodeIndex, int childNumber) {
return (nodeIndex - numParticles) * numChildren + childNumber;
}
__global__ void setEmptyMassForInnerNodes(void) {
int k;
for(k = maxNodeIndex + (threadIdx.x + blockIdx.x * blockDim.x); k < numNodes; k += blockDim.x * gridDim.x) {
p.m[k] = EMPTY;
}
}
__global__ void buildTree()
{
register int inc = blockDim.x * gridDim.x;
register int i = threadIdx.x + blockIdx.x * blockDim.x;
register int k;
register int childIndex, child;
register int lockedIndex;
register double x;
#if DIM > 1
register double y;
#endif
register double r;
register double dx;
#if DIM > 1
register double dy;
#endif
register double rootRadius = radius;
register double rootX = p.x[numNodes-1];
#if DIM > 1
register double rootY = p.y[numNodes-1];
#endif
register int depth = 0;
register int isNewParticle = TRUE;
register int currentNodeIndex;
register int newNodeIndex;
register int subtreeNodeIndex;
#if DIM == 3
register double z;
register double dz;
register double rootZ = p.z[numNodes-1];
#endif
volatile double *px, *pm;
#if DIM > 1
volatile double *py;
#if DIM == 3
volatile double *pz;
#endif
#endif
px = p.x;
pm = p.m;
#if DIM > 1
py = p.y;
#if DIM == 3
pz = p.z;
#endif
#endif
while (i < numParticles) {
depth = 0;
if (isNewParticle) {
isNewParticle = FALSE;
// cache particle data
x = px[i];
p.ax[i] = 0.0;
#if DIM > 1
y = py[i];
p.ay[i] = 0.0;
#if DIM == 3
z = pz[i];
p.az[i] = 0.0;
#endif
#endif
// start at root
currentNodeIndex = numNodes-1;
r = rootRadius;
childIndex = 0;
if (x > rootX) childIndex = 1;
#if DIM > 1
if (y > rootY) childIndex += 2;
#if DIM == 3
if (z > rootZ) childIndex += 4;
#endif
#endif
}
// follow path to leaf
child = childList[childListIndex(currentNodeIndex, childIndex)];
/* leaves are 0 ... numParticles */
while (child >= numParticles) {
currentNodeIndex = child;
depth++;
r *= 0.5;
// which child?
childIndex = 0;
if (x > px[currentNodeIndex]) childIndex = 1;
#if DIM > 1
if (y > py[currentNodeIndex]) childIndex += 2;
#if DIM > 2
if (z > pz[currentNodeIndex]) childIndex += 4;
#endif
#endif
child = childList[childListIndex(currentNodeIndex, childIndex)];
}
// we want to insert the current particle i into currentNodeIndex's child at position childIndex
// where child is now empty, locked or a particle
// if empty -> simply insert, if particle -> create new subtree
if (child != LOCKED) {
// the position where we want to place the particle gets locked
lockedIndex = childListIndex(currentNodeIndex, childIndex);
// atomic compare and save: compare if child is still the current value of childlist at the index lockedIndex, if so, lock it
// atomicCAS returns the old value of child
if (child == atomicCAS((int *) &childList[lockedIndex], child, LOCKED)) {
// if the destination is empty, insert particle
if (child == EMPTY) {
// insert the particle into this leaf
childList[lockedIndex] = i;
} else {
// there is already a particle, create new inner node
subtreeNodeIndex = -1;
do {
// get the next free nodeIndex
newNodeIndex = atomicSub((int * ) &maxNodeIndex, 1) - 1;
// throw error if there aren't enough node indices available
if (newNodeIndex <= numParticles) {
printf("(thread %d): error during tree creation: not enough nodes. newNodeIndex %d, maxNodeIndex %d, numParticles: %d\n", threadIdx.x, newNodeIndex, maxNodeIndex, numParticles);
assert(0);
}
// the first available free nodeIndex will be the subtree node
subtreeNodeIndex = max(subtreeNodeIndex, newNodeIndex);
dx = (childIndex & 1) * r;
#if DIM > 1
dy = ((childIndex >> 1) & 1) * r;
#if DIM == 3
dz = ((childIndex >> 2) & 1) * r;
#endif
#endif
depth++;
r *= 0.5;
// we save the radius here, so we can use it during neighboursearch. we have to set it to EMPTY after the neighboursearch
pm[newNodeIndex] = r;
dx = px[newNodeIndex] = px[currentNodeIndex] - r + dx;
#if DIM > 1
dy = py[newNodeIndex] = py[currentNodeIndex] - r + dy;
#if DIM == 3
dz = pz[newNodeIndex] = pz[currentNodeIndex] - r + dz;
#endif
#endif
for (k = 0; k < numChildren; k++) {
childList[childListIndex(newNodeIndex, k)] = EMPTY;
}
if (subtreeNodeIndex != newNodeIndex) {
// this condition is true when the two particles are so close to each other, that they are
// again put into the same node, so we have to create another new inner node.
// in this case, currentNodeIndex is the previous newNodeIndex
// and childIndex is the place where the particle i belongs to, relative to the previous newNodeIndex
childList[childListIndex(currentNodeIndex, childIndex)] = newNodeIndex;
}
childIndex = 0;
if (px[child] > dx) childIndex = 1;
#if DIM > 1
if (py[child] > dy) childIndex += 2;
#if DIM == 3
if (pz[child] > dz) childIndex += 4;
#endif
#endif
childList[childListIndex(newNodeIndex, childIndex)] = child;
// compare positions of particle i to the new node
currentNodeIndex = newNodeIndex;
childIndex = 0;
if (x > dx) childIndex = 1;
#if DIM > 1
if (y > dy) childIndex += 2;
#if DIM == 3
if (z > dz) childIndex += 4;
#endif
#endif
child = childList[childListIndex(currentNodeIndex, childIndex)];
// continue creating new nodes (with half radius each) until the other particle is not in the same spot in the tree
} while (child >= 0);
childList[childListIndex(currentNodeIndex, childIndex)] = i;
__threadfence();
//__threadfence() is used to halt the current thread until all previous writes to shared and global memory are visible
// by other threads. It does not halt nor affect the position of other threads though!
childList[lockedIndex] = subtreeNodeIndex;
}
p.depth[i] = depth;
// continue with next particle
i += inc;
isNewParticle = TRUE;
}
}
__syncthreads(); // child was locked, wait for other threads to unlock
}
}
/* get the maximum tree depth */
__global__ void getTreeDepth(int *treeDepthPerBlock)
{
register int i, j, k, m;
__shared__ volatile int sharedtreeDepth[NUM_THREADS_TREEDEPTH];
blockCount = 0;
int localtreeDepth = 0;
for (i = threadIdx.x + blockIdx.x * blockDim.x; i < numParticles; i += blockDim.x * gridDim.x) {
localtreeDepth = max(localtreeDepth, p.depth[i]);
}
i = threadIdx.x;
sharedtreeDepth[i] = localtreeDepth;
for (j = NUM_THREADS_TREEDEPTH / 2; j > 0; j /= 2) {
__syncthreads();
if (i < j) {
k = i+j;
sharedtreeDepth[i] = localtreeDepth = max(localtreeDepth, sharedtreeDepth[k]);
}
}
// write block result to global memory
if (i == 0) {
k = blockIdx.x;
treeDepthPerBlock[k] = localtreeDepth;
m = gridDim.x-1;
__threadfence();
if (m == atomicInc((unsigned int *) &blockCount, m)) {
for (j = 0; j <= m; j++) {
localtreeDepth = max(localtreeDepth, treeDepthPerBlock[j]);
}
blockCount = 0;
}
treeMaxDepth = localtreeDepth;
}
}
/* give an estimate how many particles will leave their leaves */
__global__ void measureTreeChange(int * movingparticlesPerBlock)
{
register int i, j, k, m;
__shared__ volatile int sharedmovingparticles[NUM_THREADS_TREECHANGE];
double nodesize = 0;
double distance = 0;
blockCount = 0;
int localmovingparticles = 0;
int localdepth = 0;
for (i = threadIdx.x + blockIdx.x * blockDim.x; i < numParticles; i += blockDim.x * gridDim.x) {
localdepth = p.depth[i];
nodesize = pow(0.5, localdepth) * radius;
// algorithm: determine if particle has moved more than 10% of cellsize of its original cell
if (reset_movingparticles) {
p_rhs.g_x[i] = p.x[i];
p_rhs.g_local_cellsize[i] = nodesize*nodesize;
#if DIM > 1
p_rhs.g_y[i] = p.y[i];
#if DIM > 2
p_rhs.g_z[i] = p.z[i];
#endif
#endif
distance = 0;
} else {
distance = (p.x[i] - p_rhs.g_x[i])*(p.x[i] - p_rhs.g_x[i]);
#if DIM > 1
distance += (p.y[i] - p_rhs.g_y[i])*(p.y[i] - p_rhs.g_y[i]);
#if DIM > 2
distance += (p.z[i] - p_rhs.g_z[i])*(p.z[i] - p_rhs.g_z[i]);
#endif
#endif
}
if (distance > p_rhs.g_local_cellsize[i]) {
localmovingparticles++;
}
}
i = threadIdx.x;
sharedmovingparticles[i] = localmovingparticles;
for (j = NUM_THREADS_TREECHANGE / 2; j > 0; j /= 2) {
__syncthreads();
if (i < j) {
k = i+j;
sharedmovingparticles[i] += sharedmovingparticles[k];
}
}
// write block result to global memory
if (i == 0) {
localmovingparticles = 0;
k = blockIdx.x;
movingparticlesPerBlock[k] = sharedmovingparticles[i];
m = gridDim.x - 1;
__threadfence();
if ((m == atomicInc((unsigned int *) &blockCount, m))) {
/* last block, add all up */
for (j = 0; j <= m; j++) {
localmovingparticles += movingparticlesPerBlock[j];
}
blockCount = 0;
}
movingparticles = localmovingparticles;
}
}
__global__ void calculateCentersOfMass()
{
register int i, k, child, missing;
register double m, cm, px;
#if DIM > 1
register double py;
#endif
#if DIM == 3
register double pz;
#endif
#if DIM == 3
__shared__ volatile int sharedChildList[NUM_THREADS_CALC_CENTER_OF_MASS * 8];
#elif DIM == 2
__shared__ volatile int sharedChildList[NUM_THREADS_CALC_CENTER_OF_MASS * 4];
#elif DIM == 1
__shared__ volatile int sharedChildList[NUM_THREADS_CALC_CENTER_OF_MASS * 2];
#endif
k = maxNodeIndex + (threadIdx.x + blockIdx.x * blockDim.x);
missing = 0;
while (k < numNodes) {
if (missing == 0) {
// new cell, so initialize
cm = 0.0;
px = 0.0;
#if DIM > 1
py = 0.0;
#if DIM == 3
pz = 0.0;
#endif
#endif
for (i = 0; i < numChildren; i++) {
child = childList[childListIndex(k, i)];
if (child != EMPTY) {
sharedChildList[missing * NUM_THREADS_CALC_CENTER_OF_MASS + threadIdx.x] = child; // cache missing children
m = p.m[child];
missing++;
if (m >= 0.0) {
// child is ready
missing--;
// add child's contribution
cm += m;
px += p.x[child] * m;
#if DIM > 1
py += p.y[child] * m;
#if DIM == 3
pz += p.z[child] * m;
#endif
#endif
}
}
}
}
if (missing != 0) {
do {
// poll missing child
child = sharedChildList[(missing - 1) * NUM_THREADS_CALC_CENTER_OF_MASS + threadIdx.x];
m = p.m[child];
if (m >= 0.0) {
// child is now ready
missing--;
// add child's contribution
cm += m;
px += p.x[child] * m;
#if DIM > 1
py += p.y[child] * m;
#if DIM == 3
pz += p.z[child] * m;
#endif
#endif
}
// repeat until we are done or child is not ready
} while ((m >= 0.0) && (missing != 0));
}
if (missing == 0) {
// all children are ready, so store computed information
m = 1.0 / cm;
p.x[k] = px * m;
#if DIM > 1
p.y[k] = py * m;
#if DIM == 3
p.z[k] = pz * m;
#endif
#endif
__threadfence(); // make sure data are visible before setting mass
p.m[k] = cm;
k += blockDim.x * gridDim.x; // move on to next cell
}
}
}
/* checks interaction list for symmetry */
/*
removes particle j from particle i's interaction list if particle i is not in
particles j's interaction list
awfully slow, not used for the time being
*/
__global__ void symmetrizeInteractions(int *interactions)
{
int i, inc, indexP, j;
int noi;
int found;
int k;
int nod;
int di[MAX_NUM_INTERACTIONS] = {0, };
inc = blockDim.x * gridDim.x;
/* loop over all particles */
for (i = threadIdx.x + blockIdx.x * blockDim.x; i < numParticles; i += inc) {
nod = 0;
/* check the interaction list of particle i */
noi = p.noi[i];
for (j = 0; j < noi; j++) {
/* index of interaction partner */
indexP = interactions[i * MAX_NUM_INTERACTIONS + j];
/* check if i is in interaction list of indexP */
found = FALSE;
/* loop over all interactions of interaction partner */
for (k = 0; k < p.noi[indexP]; k++) {
if (interactions[indexP * MAX_NUM_INTERACTIONS + k] == i) {
found = TRUE;
break;
}
}
/* if i was not found in interactions of indexP, delete indexP from interaction list of i */
if (!found) {
/* remember index, that we want to delete */
di[nod++] = j;
}
}
/* remove deleted partners from interaction list */
for (k = 0; k < nod; k++) {
interactions[i*MAX_NUM_INTERACTIONS+di[k]] = interactions[i*MAX_NUM_INTERACTIONS+noi--];
}
p.noi[i] = noi;
} /* for loop over all particles */
}
#if VARIABLE_SML && FIXED_NOI
/* search interaction partners with variable smoothing length */
__global__ void knnNeighbourSearch(int *interactions)
{
register int i, inc, nodeIndex, depth, childNumber, child;
register double x, y, interactionDistance, dx, dy, r, d;
register int currentNodeIndex[MAXDEPTH];
register int currentChildNumber[MAXDEPTH];
register int numberOfInteractions;
#if DIM == 3
register double z, dz;
#endif
inc = blockDim.x * gridDim.x;
/* loop over all particles */
for (i = threadIdx.x + blockIdx.x * blockDim.x; i < numParticles; i += inc) {
x = p.x[i];
y = p.y[i];
#if DIM == 3
z = p.z[i];
#endif
volatile int found = FALSE;
register int nit = -1;
double htmp, htmpold;
volatile double htmpj;
htmp = p.h[i];
/* look for nice sml */
while (!found) {
numberOfInteractions = 0;
nit++;
depth = 0;
currentNodeIndex[depth] = numNodes - 1;
currentChildNumber[depth] = 0;
numberOfInteractions = 0;
r = radius * 0.5; // because we start with root children
interactionDistance = (r + htmp);
do {
childNumber = currentChildNumber[depth];
nodeIndex = currentNodeIndex[depth];
while (childNumber < numChildren) {
child = childList[childListIndex(nodeIndex, childNumber)];
childNumber++;
if (child != EMPTY && child != i) {
dx = x - p.x[child];
dy = y - p.y[child];
#if DIM == 3
dz = z - p.z[child];
#endif
if (child < numParticles) {
d = dx*dx + dy*dy;
#if DIM == 3
d += dz*dz;
#endif
htmpj = p.h[child];
if (d < htmp*htmp && d < htmpj*htmpj) {
numberOfInteractions++;
}
} else if (fabs(dx) < interactionDistance && fabs(dy) < interactionDistance
#if DIM == 3
&& fabs(dz) < interactionDistance
#endif
) {
// put child on stack
currentChildNumber[depth] = childNumber;
currentNodeIndex[depth] = nodeIndex;
depth++;
r *= 0.5;
interactionDistance = (r + htmp);
if (depth >= MAXDEPTH) {
printf("Error, maxdepth reached! problem in tree during interaction search");
assert(depth < MAXDEPTH);
}
childNumber = 0;
nodeIndex = child;
}
}
}
depth--;
r *= 2.0;
interactionDistance = (r + htmp);
} while (depth >= 0);
htmpold = htmp;
// printf("%d %d %e\n", i, numberOfInteractions, htmp);
/* stop if we have the desired number of interaction partners \pm TOLERANCE_WANTED_NUMBER_OF_INTERACTIONS */
if ((nit > MAX_VARIABLE_SML_ITERATIONS || abs(numberOfInteractions - matnoi[p_rhs.materialId[i]]) < TOLERANCE_WANTED_NUMBER_OF_INTERACTIONS ) && numberOfInteractions < MAX_NUM_INTERACTIONS) {
found = TRUE;
p.h[i] = htmp;
} else if (numberOfInteractions >= MAX_NUM_INTERACTIONS) {
htmpold = htmp;
if (numberOfInteractions < 1)
numberOfInteractions = 1;
htmp *= 0.5 * ( 1.0 + pow( (double) matnoi[p_rhs.materialId[i]]/ (double) numberOfInteractions, 1./DIM));
} else {
/* lower or raise htmp accordingly */
if (numberOfInteractions < 1)
numberOfInteractions = 1;
htmpold = htmp;
htmp *= 0.5 * ( 1.0 + pow( (double) matnoi[p_rhs.materialId[i]]/ (double) numberOfInteractions, 1./DIM));
}
#if DEBUG_MISC
if (htmp < 1e-20) {
printf("+++ particle: %d it: %d htmp: %e htmpold: %e wanted: %d current: %d mId: %d \n", i, nit,
htmp, htmpold, matnoi[p_rhs.materialId[i]], numberOfInteractions, p_rhs.materialId[i]);
}
#endif
}
}
}
#endif
/* search interaction partners for each particle */
/* the smoothing length is changed if MAX_NUM_INTERACTIONS is reached */
__global__ void nearNeighbourSearch_modify_sml(int *interactions)
{
register int i, inc, nodeIndex, depth, childNumber, child;
register double x, interactionDistance, dx, r, d;
#if DIM > 1
register double y, dy;
#endif
register int currentNodeIndex[MAXDEPTH];
register int currentChildNumber[MAXDEPTH];
register int numberOfInteractions;
#if DIM == 3
register double z, dz;
#endif
inc = blockDim.x * gridDim.x;
register int interactions_OK = 0;
for (i = threadIdx.x + blockIdx.x * blockDim.x; i < numParticles; i += inc) {
x = p.x[i];
#if DIM > 1
y = p.y[i];
#if DIM == 3
z = p.z[i];
#endif
#endif
double sml; /* smoothing length of particle */
volatile double smlj; /* smoothing length of potential interaction partner */
start_interaction_search_for_particle:
// start at root
depth = 0;
currentNodeIndex[depth] = numNodes - 1;
currentChildNumber[depth] = 0;
numberOfInteractions = 0;
r = radius * 0.5; // because we start with root children
sml = p.h[i];
interactionDistance = (r + sml);
// flag for numberOfInteractions < MAX_NUM_INTERACTIONS
interactions_OK = 0;
do {
childNumber = currentChildNumber[depth];
nodeIndex = currentNodeIndex[depth];
while (childNumber < numChildren) {
child = childList[childListIndex(nodeIndex, childNumber)];
childNumber++;
if (child != EMPTY && child != i) {
dx = x - p.x[child];
#if DIM > 1
dy = y - p.y[child];
#if DIM == 3
dz = z - p.z[child];
#endif
#endif
if (child < numParticles) {
d = dx*dx;
#if DIM > 1
d += dy*dy;
#if DIM == 3
d += dz*dz;
#endif
#endif
smlj = p.h[child];
// make sure, all interactions are symmetric
if (d < sml*sml && d < smlj*smlj) {
// check if we are still safe with the current numberOfInteractions
if (numberOfInteractions < MAX_NUM_INTERACTIONS) {
interactions[i * MAX_NUM_INTERACTIONS + numberOfInteractions] = child;
}
numberOfInteractions++;
}
} else if (fabs(dx) < interactionDistance
#if DIM > 1
&& fabs(dy) < interactionDistance
#if DIM == 3
&& fabs(dz) < interactionDistance
#endif
#endif
) {
// put child on stack
currentChildNumber[depth] = childNumber;
currentNodeIndex[depth] = nodeIndex;
depth++;
r *= 0.5;
interactionDistance = (r + sml);
if (depth >= MAXDEPTH) {
printf("Error, maxdepth reached!");
assert(depth < MAXDEPTH);
}
childNumber = 0;
nodeIndex = child;
}
}
}
depth--;
r *= 2.0;
interactionDistance = (r + sml);
} while (depth >= 0);
if (numberOfInteractions >= MAX_NUM_INTERACTIONS) {
// now, we lower the sml according to the dimension and the ratio
sml = pow((double) MAX_NUM_INTERACTIONS/(double) numberOfInteractions, 1./DIM) * p.h[i];
// and remove another 20%
if (threadIdx.x == 0)
printf("WARNING: Maximum number of interactions exceeded: %d / %d, lower sml from %.16f to %.16f\n", numberOfInteractions, MAX_NUM_INTERACTIONS, p.h[i], 0.8*sml);
p.h[i] = 0.8*sml;
// do this search for particle i again
goto start_interaction_search_for_particle;
}
p.noi[i] = numberOfInteractions;
}
}
/* search interaction partners for each particle */
__global__ void nearNeighbourSearch(int *interactions)
{
register int i, inc, nodeIndex, depth, childNumber, child;
register double x, interactionDistance, dx, r, d;
#if DIM > 1
register double y, dy;
#endif
register int currentNodeIndex[MAXDEPTH];
register int currentChildNumber[MAXDEPTH];
register int numberOfInteractions;
#if DIM == 3
register double z, dz;
#endif
inc = blockDim.x * gridDim.x;
for (i = threadIdx.x + blockIdx.x * blockDim.x; i < numParticles; i += inc) {
x = p.x[i];
#if DIM > 1
y = p.y[i];
#if DIM == 3
z = p.z[i];
#endif
#endif
double sml; /* smoothing length of particle */
double smlj; /* smoothing length of potential interaction partner */
// start at root
depth = 0;
currentNodeIndex[depth] = numNodes - 1;
currentChildNumber[depth] = 0;
numberOfInteractions = 0;
r = radius * 0.5; // because we start with root children
sml = p.h[i];
p.noi[i] = 0;
interactionDistance = (r + sml);
do {
childNumber = currentChildNumber[depth];
nodeIndex = currentNodeIndex[depth];
while (childNumber < numChildren) {
child = childList[childListIndex(nodeIndex, childNumber)];
childNumber++;
if (child != EMPTY && child != i) {
dx = x - p.x[child];
#if DIM > 1
dy = y - p.y[child];
#if DIM == 3
dz = z - p.z[child];
#endif
#endif
if (child < numParticles) {
if (p_rhs.materialId[child] == EOS_TYPE_IGNORE) {
continue;
}
d = dx*dx;
#if DIM > 1
d += dy*dy;
#if DIM == 3
d += dz*dz;
#endif
#endif
smlj = p.h[child];
if (d < sml*sml && d < smlj*smlj) {
interactions[i * MAX_NUM_INTERACTIONS + numberOfInteractions] = child;
numberOfInteractions++;
#if TOO_MANY_INTERACTIONS_KILL_PARTICLE
if (numberOfInteractions >= MAX_NUM_INTERACTIONS) {
printf("setting the smoothing length for particle %d to 0!\n", i);
p.h[i] = 0.0;
p.noi[i] = 0;
sml = 0.0;
interactionDistance = 0.0;
p_rhs.materialId[i] = EOS_TYPE_IGNORE;
// continue with next particle by setting depth to -1
// cms 2018-01-19
depth = -1;
break;
}
#endif
}
} else if (fabs(dx) < interactionDistance
#if DIM > 1
&& fabs(dy) < interactionDistance
#if DIM == 3
&& fabs(dz) < interactionDistance
#endif
#endif
) {
// put child on stack
currentChildNumber[depth] = childNumber;
currentNodeIndex[depth] = nodeIndex;
depth++;
r *= 0.5;
interactionDistance = (r + sml);
if (depth >= MAXDEPTH) {
printf("Error, maxdepth reached!");
assert(depth < MAXDEPTH);
}
childNumber = 0;
nodeIndex = child;
}
}
}
depth--;
r *= 2.0;
interactionDistance = (r + sml);
} while (depth >= 0);
if (numberOfInteractions >= MAX_NUM_INTERACTIONS) {
//printf("ERROR: Maximum number of interactions exceeded: %d / %d\n", numberOfInteractions, MAX_NUM_INTERACTIONS);
#if !TOO_MANY_INTERACTIONS_KILL_PARTICLE
assert(numberOfInteractions < MAX_NUM_INTERACTIONS);
#endif
/*
for (child = 0; child < MAX_NUM_INTERACTIONS; child++) {
printf("(thread %d): %d - %d\n", threadIdx.x, i, interactions[i*MAX_NUM_INTERACTIONS+child]);
} */
}
p.noi[i] = numberOfInteractions;
}
}
#if VARIABLE_SML
// checks if the smoothing length is too large or too small
__global__ void check_sml_boundary(void)
{
int i, inc;
int matId, d, e;
double smlmin, smlmax;
inc = blockDim.x * gridDim.x;
for (i = threadIdx.x + blockIdx.x * blockDim.x; i < numParticles; i += inc) {
matId = p_rhs.materialId[i];
smlmin = p_rhs.h0[i] * mat_f_sml_min[matId];
smlmax = p_rhs.h0[i] * mat_f_sml_max[matId];
if (p.h[i] < smlmin) {
p.h[i] = smlmin;
#if INTEGRATE_SML
p.dhdt[i] = 0.0;
#endif
} else if (p.h[i] > smlmax) {
p.h[i] = smlmax;
#if INTEGRATE_SML
p.dhdt[i] = 0.0;
#endif
}
}
}
#endif
__global__ void computationalDomain(
double *minxPerBlock, double *maxxPerBlock
#if DIM > 1
, double *minyPerBlock, double *maxyPerBlock
#endif
#if DIM == 3
, double *minzPerBlock, double *maxzPerBlock
#endif
) {
register int i, j, k, m;
__shared__ volatile double sharedMinX[NUM_THREADS_COMPUTATIONAL_DOMAIN];
__shared__ volatile double sharedMaxX[NUM_THREADS_COMPUTATIONAL_DOMAIN];
#if DIM > 1
__shared__ volatile double sharedMinY[NUM_THREADS_COMPUTATIONAL_DOMAIN];
__shared__ volatile double sharedMaxY[NUM_THREADS_COMPUTATIONAL_DOMAIN];
register double localMinY, localMaxY;
#endif
register double localMinX, localMaxX;
#if DIM == 3
__shared__ volatile double sharedMinZ[NUM_THREADS_COMPUTATIONAL_DOMAIN];
__shared__ volatile double sharedMaxZ[NUM_THREADS_COMPUTATIONAL_DOMAIN];
register double localMinZ, localMaxZ;
#endif
// init with valid data
localMinX = p.x[0];
localMaxX = p.x[0];
#if DIM > 1
localMinY = p.y[0];
localMaxY = p.y[0];
#if DIM == 3
localMinZ = p.z[0];
localMaxZ = p.z[0];
#endif
#endif
for (i = threadIdx.x + blockIdx.x * blockDim.x; i < numParticles; i+= blockDim.x * gridDim.x) {
// find minimum and maximum coordinates
localMinX = min(localMinX, p.x[i]);
localMaxX = max(localMaxX, p.x[i]);
#if DIM > 1
localMinY = min(localMinY, p.y[i]);
localMaxY = max(localMaxY, p.y[i]);
#if DIM == 3
localMinZ = min(localMinZ, p.z[i]);
localMaxZ = max(localMaxZ, p.z[i]);
#endif
#endif
}
i = threadIdx.x;
sharedMinX[i] = localMinX;
sharedMaxX[i] = localMaxX;
#if DIM > 1
sharedMinY[i] = localMinY;
sharedMaxY[i] = localMaxY;
#if DIM == 3
sharedMinZ[i] = localMinZ;
sharedMaxZ[i] = localMaxZ;
#endif
#endif
// reduction
for (j = NUM_THREADS_COMPUTATIONAL_DOMAIN / 2; j > 0; j /= 2) {
__syncthreads();
if (i < j) {
k = i + j;
sharedMinX[i] = localMinX = min(localMinX, sharedMinX[k]);
sharedMaxX[i] = localMaxX = max(localMaxX, sharedMaxX[k]);
#if DIM > 1
sharedMinY[i] = localMinY = min(localMinY, sharedMinY[k]);
sharedMaxY[i] = localMaxY = max(localMaxY, sharedMaxY[k]);