Fermat factorization can be used to factor a number which is a multiple of 2 close "prime number" i.e. n=p*q form.
The number gets factored down very efficiently within seconds if it is of the above form.
You can use Fermat factorization in for fatoring public key(n) in RSA or any other cryptosystem if you think that the two prime are close enough that can be factored using fermat.
Put t₀=ceil(sqrt(n))
then find sqrt(pow((t₀+1),2)-n),sqrt(pow((t₀+2),2)-n),sqrt(pow((t₀+3),2)-n),........
until the value of the sqrt will be a natural number.
Let's Take an example for n : 678081097161691654731614143911409179
Step 1 : put t₀=ceil(sqrt(n)) -> t₀=823456797386293761
Step 2 : sqrt(pow((t₀+1),2)-n) -> 1527353709.7374346 not a natural number :(
Step 3 : sqrt(pow((t₀+2),2)-n) -> 1994924296.6642346 not a natural number :(
Step 4 : sqrt(pow((t₀+3),2)-n) -> 2372053233.8448644 not a natural number :(
when t₀+41 the result of sqrt(pow((t₀+41),2)-n) comes out to be a natural number which is 8258895395
So our s=8258895395
t = t₀+41 = 823456797386293802
So one number will be (p) : t+s = 823456805645189197
Other number (q) : t-s = 823456789127398407
Function for fermat factor
# Code
`
def fermat(n):
t0=isqrt(n)+1
counter=0
t=t0+counter
temp=isqrt((t*t)-n)
while((temp*temp)!=((t*t)-n)):
counter+=1
t=t0+counter
temp=isqrt((t*t)-n)
s=temp
p=t+s
q=t-s
return p,q
`
Get full code here