Speech Classification with Continuous Attention Mechanisms.
This is the code for speech classification experiments of the paper:
- Sparse Continuous Distributions and Fenchel-Young Losses by André F. T. Martins, Marcos Treviso, António Farinhas, Pedro M. Q. Aguiar, Mário A. T. Figueiredo, Mathieu Blondel, Vlad Niculae.
which builds upon:
- Sparse and Continuous Attention Mechanisms by André Martins, António Farinhas, Marcos Treviso, Vlad Niculae, Pedro Aguiar, Mario Figueiredo. NeurIPS 2020.
The code is based on the following speechbrain
recipes:
We provide scripts for UrbanSound8k only. The datasets should be placed in the data/
folder.
First, install the spcdist library to get support for sparse continuous distributions:
pip3 install git+https://github.com/deep-spin/sparse_continuous_distributions#egg=spcdist
Then install other requirements via:
pip3 install -r requirements.txt
Valdiating and testing on fold 1:
# discrete-attention models
for max_act in "softmax", "entmax1333", "entmax15", "sparsemax"
do
mkdir "results/urbansound8k_discrete_${max_act}"
python3 urbansound8k_train.py hparams/urbansound8k_acrnn.yaml \
--train_fold_nums=[2, 3, 4, 5, 6, 7, 8, 9, 10] \
--valid_fold_nums=[1] \
--test_fold_nums=[1] \
--attn_domain discrete \
--attn_max_activation ${max_act} \
--output_folder=results/urbansound8k_discrete_${max_act}/fold_1 \
--device=cuda:0
done
# continuous-attention models
for max_act in "softmax", "triweight", "biweight", "sparsemax"
do
mkdir "results/urbansound8k_continuous_${max_act}"
python3 urbansound8k_train.py hparams/urbansound8k_acrnn.yaml \
--train_fold_nums=[2, 3, 4, 5, 6, 7, 8, 9, 10] \
--valid_fold_nums=[1] \
--test_fold_nums=[1] \
--attn_domain continuous \
--attn_max_activation ${max_act} \
--output_folder=results/urbansound8k_continuous_${max_act}/fold_1 \
--device=cuda:0
done
Do the same for the other folds and average in the end to get the final results as in the paper.
See the config files in the hparams
folder for more information.
First, save the spectrograms:
mkdir -p specs/urbansound8k_continuous_sparsemax
python3 urbansound8k_save_specs.py hparams/urbansound8k_acrnn.yaml \
--train_fold_nums=[2, 3, 4, 5, 6, 7, 8, 9, 10] \
--valid_fold_nums=[1] \
--test_fold_nums=[1] \
--attn_domain continuous \
--attn_max_activation sparsemax \
--output_folder=results/urbansound8k_continuous_sparsemax/fold_1 \
--device=cpu \
--attn_num_samples 50 \
--spec_dname specs/urbansound8k_continuous_sparsemax/
And then save the attention maps:
mkdir saved_attentions
python3 urbansound8k_save_attentions.py hparams/urbansound8k_acrnn.yaml \
--train_fold_nums=[2, 3, 4, 5, 6, 7, 8, 9, 10] \
--valid_fold_nums=[1] \
--test_fold_nums=[1] \
--attn_domain continuous \
--attn_max_activation sparsemax \
--output_folder=results/urbansound8k_continuous_sparsemax/fold_1 \
--device=cuda:2 \
--attn_num_samples 200 \
--attn_fname saved_attentions/urbansound8k_continuous_sparsemax.csv
For plotting attention densities you can follow the step-by-step instructions in this notebook: https://colab.research.google.com/drive/1Ce51VB_rgmNmxB5lggRSUDZ__-zu-Xov?usp=sharing
If you use this codebase, or otherwise found our work valuable, please cite:
todo