comments | difficulty | edit_url | rating | source | tags | |||||
---|---|---|---|---|---|---|---|---|---|---|
true |
中等 |
2277 |
第 261 场周赛 Q3 |
|
Alice 和 Bob 再次设计了一款新的石子游戏。现有一行 n 个石子,每个石子都有一个关联的数字表示它的价值。给你一个整数数组 stones
,其中 stones[i]
是第 i
个石子的价值。
Alice 和 Bob 轮流进行自己的回合,Alice 先手。每一回合,玩家需要从 stones
中移除任一石子。
- 如果玩家移除石子后,导致 所有已移除石子 的价值 总和 可以被 3 整除,那么该玩家就 输掉游戏 。
- 如果不满足上一条,且移除后没有任何剩余的石子,那么 Bob 将会直接获胜(即便是在 Alice 的回合)。
假设两位玩家均采用 最佳 决策。如果 Alice 获胜,返回 true
;如果 Bob 获胜,返回 false
。
示例 1:
输入:stones = [2,1] 输出:true 解释:游戏进行如下: - 回合 1:Alice 可以移除任意一个石子。 - 回合 2:Bob 移除剩下的石子。 已移除的石子的值总和为 1 + 2 = 3 且可以被 3 整除。因此,Bob 输,Alice 获胜。
示例 2:
输入:stones = [2] 输出:false 解释:Alice 会移除唯一一个石子,已移除石子的值总和为 2 。 由于所有石子都已移除,且值总和无法被 3 整除,Bob 获胜。
示例 3:
输入:stones = [5,1,2,4,3] 输出:false 解释:Bob 总会获胜。其中一种可能的游戏进行方式如下: - 回合 1:Alice 可以移除值为 1 的第 2 个石子。已移除石子值总和为 1 。 - 回合 2:Bob 可以移除值为 3 的第 5 个石子。已移除石子值总和为 = 1 + 3 = 4 。 - 回合 3:Alices 可以移除值为 4 的第 4 个石子。已移除石子值总和为 = 1 + 3 + 4 = 8 。 - 回合 4:Bob 可以移除值为 2 的第 3 个石子。已移除石子值总和为 = 1 + 3 + 4 + 2 = 10. - 回合 5:Alice 可以移除值为 5 的第 1 个石子。已移除石子值总和为 = 1 + 3 + 4 + 2 + 5 = 15. Alice 输掉游戏,因为已移除石子值总和(15)可以被 3 整除,Bob 获胜。
提示:
1 <= stones.length <= 105
1 <= stones[i] <= 104
由于玩家的目标是使得已移除石子的价值总和不能被
我们用一个长度为
在第一回合,Alice 不能移除余数为
我们首先考虑 Alice 移除余数为
对于第一回合 Alice 移除余数为
时间复杂度
class Solution:
def stoneGameIX(self, stones: List[int]) -> bool:
def check(cnt: List[int]) -> bool:
if cnt[1] == 0:
return False
cnt[1] -= 1
r = 1 + min(cnt[1], cnt[2]) * 2 + cnt[0]
if cnt[1] > cnt[2]:
cnt[1] -= 1
r += 1
return r % 2 == 1 and cnt[1] != cnt[2]
c1 = [0] * 3
for x in stones:
c1[x % 3] += 1
c2 = [c1[0], c1[2], c1[1]]
return check(c1) or check(c2)
class Solution {
public boolean stoneGameIX(int[] stones) {
int[] c1 = new int[3];
for (int x : stones) {
c1[x % 3]++;
}
int[] c2 = {c1[0], c1[2], c1[1]};
return check(c1) || check(c2);
}
private boolean check(int[] cnt) {
if (--cnt[1] < 0) {
return false;
}
int r = 1 + Math.min(cnt[1], cnt[2]) * 2 + cnt[0];
if (cnt[1] > cnt[2]) {
--cnt[1];
++r;
}
return r % 2 == 1 && cnt[1] != cnt[2];
}
}
class Solution {
public:
bool stoneGameIX(vector<int>& stones) {
vector<int> c1(3);
for (int x : stones) {
++c1[x % 3];
}
vector<int> c2 = {c1[0], c1[2], c1[1]};
auto check = [](auto& cnt) -> bool {
if (--cnt[1] < 0) {
return false;
}
int r = 1 + min(cnt[1], cnt[2]) * 2 + cnt[0];
if (cnt[1] > cnt[2]) {
--cnt[1];
++r;
}
return r % 2 && cnt[1] != cnt[2];
};
return check(c1) || check(c2);
}
};
func stoneGameIX(stones []int) bool {
c1 := [3]int{}
for _, x := range stones {
c1[x%3]++
}
c2 := [3]int{c1[0], c1[2], c1[1]}
check := func(cnt [3]int) bool {
if cnt[1] == 0 {
return false
}
cnt[1]--
r := 1 + min(cnt[1], cnt[2])*2 + cnt[0]
if cnt[1] > cnt[2] {
cnt[1]--
r++
}
return r%2 == 1 && cnt[1] != cnt[2]
}
return check(c1) || check(c2)
}
function stoneGameIX(stones: number[]): boolean {
const c1: number[] = Array(3).fill(0);
for (const x of stones) {
++c1[x % 3];
}
const c2: number[] = [c1[0], c1[2], c1[1]];
const check = (cnt: number[]): boolean => {
if (--cnt[1] < 0) {
return false;
}
let r = 1 + Math.min(cnt[1], cnt[2]) * 2 + cnt[0];
if (cnt[1] > cnt[2]) {
--cnt[1];
++r;
}
return r % 2 === 1 && cnt[1] !== cnt[2];
};
return check(c1) || check(c2);
}
function stoneGameIX(stones) {
const c1 = Array(3).fill(0);
for (const x of stones) {
++c1[x % 3];
}
const c2 = [c1[0], c1[2], c1[1]];
const check = cnt => {
if (--cnt[1] < 0) {
return false;
}
let r = 1 + Math.min(cnt[1], cnt[2]) * 2 + cnt[0];
if (cnt[1] > cnt[2]) {
--cnt[1];
++r;
}
return r % 2 === 1 && cnt[1] !== cnt[2];
};
return check(c1) || check(c2);
}
function stoneGameIX(stones: number[]): boolean {
if (stones.length === 1) return false;
const cnt = Array(3).fill(0);
for (const x of stones) cnt[x % 3]++;
const check = (x: number, cnt: number[]): boolean => {
let c = 1;
if (--cnt[x] < 0) return false;
while (cnt[1] || cnt[2]) {
if (cnt[x]) {
cnt[x]--;
x = x === 1 ? 2 : 1;
} else return (c + cnt[0]) % 2 === 1;
c++;
}
return false;
};
return check(1, [...cnt]) || check(2, [...cnt]);
}
function stoneGameIX(stones) {
if (stones.length === 1) return false;
const cnt = Array(3).fill(0);
for (const x of stones) cnt[x % 3]++;
const check = (x, cnt) => {
let c = 1;
if (--cnt[x] < 0) return false;
while (cnt[1] || cnt[2]) {
if (cnt[x]) {
cnt[x]--;
x = x === 1 ? 2 : 1;
} else return (c + cnt[0]) % 2 === 1;
c++;
}
return false;
};
return check(1, [...cnt]) || check(2, [...cnt]);
}