comments | difficulty | edit_url | rating | source | tags | |||||
---|---|---|---|---|---|---|---|---|---|---|
true |
Medium |
2277 |
Weekly Contest 261 Q3 |
|
Alice and Bob continue their games with stones. There is a row of n stones, and each stone has an associated value. You are given an integer array stones
, where stones[i]
is the value of the ith
stone.
Alice and Bob take turns, with Alice starting first. On each turn, the player may remove any stone from stones
. The player who removes a stone loses if the sum of the values of all removed stones is divisible by 3
. Bob will win automatically if there are no remaining stones (even if it is Alice's turn).
Assuming both players play optimally, return true
if Alice wins and false
if Bob wins.
Example 1:
Input: stones = [2,1] Output: true Explanation: The game will be played as follows: - Turn 1: Alice can remove either stone. - Turn 2: Bob removes the remaining stone. The sum of the removed stones is 1 + 2 = 3 and is divisible by 3. Therefore, Bob loses and Alice wins the game.
Example 2:
Input: stones = [2] Output: false Explanation: Alice will remove the only stone, and the sum of the values on the removed stones is 2. Since all the stones are removed and the sum of values is not divisible by 3, Bob wins the game.
Example 3:
Input: stones = [5,1,2,4,3] Output: false Explanation: Bob will always win. One possible way for Bob to win is shown below: - Turn 1: Alice can remove the second stone with value 1. Sum of removed stones = 1. - Turn 2: Bob removes the fifth stone with value 3. Sum of removed stones = 1 + 3 = 4. - Turn 3: Alices removes the fourth stone with value 4. Sum of removed stones = 1 + 3 + 4 = 8. - Turn 4: Bob removes the third stone with value 2. Sum of removed stones = 1 + 3 + 4 + 2 = 10. - Turn 5: Alice removes the first stone with value 5. Sum of removed stones = 1 + 3 + 4 + 2 + 5 = 15. Alice loses the game because the sum of the removed stones (15) is divisible by 3. Bob wins the game.
Constraints:
1 <= stones.length <= 105
1 <= stones[i] <= 104
Since the player's goal is to ensure the total value of the removed stones is not divisible by
We use an array
In the first round, Alice cannot remove stones with a remainder of
First, let's consider the case where Alice removes a stone with a remainder of
For the case where Alice removes a stone with a remainder of
The time complexity is
class Solution:
def stoneGameIX(self, stones: List[int]) -> bool:
def check(cnt: List[int]) -> bool:
if cnt[1] == 0:
return False
cnt[1] -= 1
r = 1 + min(cnt[1], cnt[2]) * 2 + cnt[0]
if cnt[1] > cnt[2]:
cnt[1] -= 1
r += 1
return r % 2 == 1 and cnt[1] != cnt[2]
c1 = [0] * 3
for x in stones:
c1[x % 3] += 1
c2 = [c1[0], c1[2], c1[1]]
return check(c1) or check(c2)
class Solution {
public boolean stoneGameIX(int[] stones) {
int[] c1 = new int[3];
for (int x : stones) {
c1[x % 3]++;
}
int[] c2 = {c1[0], c1[2], c1[1]};
return check(c1) || check(c2);
}
private boolean check(int[] cnt) {
if (--cnt[1] < 0) {
return false;
}
int r = 1 + Math.min(cnt[1], cnt[2]) * 2 + cnt[0];
if (cnt[1] > cnt[2]) {
--cnt[1];
++r;
}
return r % 2 == 1 && cnt[1] != cnt[2];
}
}
class Solution {
public:
bool stoneGameIX(vector<int>& stones) {
vector<int> c1(3);
for (int x : stones) {
++c1[x % 3];
}
vector<int> c2 = {c1[0], c1[2], c1[1]};
auto check = [](auto& cnt) -> bool {
if (--cnt[1] < 0) {
return false;
}
int r = 1 + min(cnt[1], cnt[2]) * 2 + cnt[0];
if (cnt[1] > cnt[2]) {
--cnt[1];
++r;
}
return r % 2 && cnt[1] != cnt[2];
};
return check(c1) || check(c2);
}
};
func stoneGameIX(stones []int) bool {
c1 := [3]int{}
for _, x := range stones {
c1[x%3]++
}
c2 := [3]int{c1[0], c1[2], c1[1]}
check := func(cnt [3]int) bool {
if cnt[1] == 0 {
return false
}
cnt[1]--
r := 1 + min(cnt[1], cnt[2])*2 + cnt[0]
if cnt[1] > cnt[2] {
cnt[1]--
r++
}
return r%2 == 1 && cnt[1] != cnt[2]
}
return check(c1) || check(c2)
}
function stoneGameIX(stones: number[]): boolean {
const c1: number[] = Array(3).fill(0);
for (const x of stones) {
++c1[x % 3];
}
const c2: number[] = [c1[0], c1[2], c1[1]];
const check = (cnt: number[]): boolean => {
if (--cnt[1] < 0) {
return false;
}
let r = 1 + Math.min(cnt[1], cnt[2]) * 2 + cnt[0];
if (cnt[1] > cnt[2]) {
--cnt[1];
++r;
}
return r % 2 === 1 && cnt[1] !== cnt[2];
};
return check(c1) || check(c2);
}
function stoneGameIX(stones) {
const c1 = Array(3).fill(0);
for (const x of stones) {
++c1[x % 3];
}
const c2 = [c1[0], c1[2], c1[1]];
const check = cnt => {
if (--cnt[1] < 0) {
return false;
}
let r = 1 + Math.min(cnt[1], cnt[2]) * 2 + cnt[0];
if (cnt[1] > cnt[2]) {
--cnt[1];
++r;
}
return r % 2 === 1 && cnt[1] !== cnt[2];
};
return check(c1) || check(c2);
}
function stoneGameIX(stones: number[]): boolean {
if (stones.length === 1) return false;
const cnt = Array(3).fill(0);
for (const x of stones) cnt[x % 3]++;
const check = (x: number, cnt: number[]): boolean => {
let c = 1;
if (--cnt[x] < 0) return false;
while (cnt[1] || cnt[2]) {
if (cnt[x]) {
cnt[x]--;
x = x === 1 ? 2 : 1;
} else return (c + cnt[0]) % 2 === 1;
c++;
}
return false;
};
return check(1, [...cnt]) || check(2, [...cnt]);
}
function stoneGameIX(stones) {
if (stones.length === 1) return false;
const cnt = Array(3).fill(0);
for (const x of stones) cnt[x % 3]++;
const check = (x, cnt) => {
let c = 1;
if (--cnt[x] < 0) return false;
while (cnt[1] || cnt[2]) {
if (cnt[x]) {
cnt[x]--;
x = x === 1 ? 2 : 1;
} else return (c + cnt[0]) % 2 === 1;
c++;
}
return false;
};
return check(1, [...cnt]) || check(2, [...cnt]);
}