Skip to content

Latest commit

 

History

History
104 lines (79 loc) · 2.24 KB

File metadata and controls

104 lines (79 loc) · 2.24 KB
comments difficulty edit_url tags
true
简单
Pandas

English Version

题目描述

DataFrame df1
+-------------+--------+
| Column Name | Type   |
+-------------+--------+
| student_id  | int    |
| name        | object |
| age         | int    |
+-------------+--------+

DataFrame df2
+-------------+--------+
| Column Name | Type   |
+-------------+--------+
| student_id  | int    |
| name        | object |
| age         | int    |
+-------------+--------+

编写一个解决方案,将两个 DataFrames 垂直 连接成一个 DataFrame。

结果格式如下示例所示。

 

示例 1:

输入:
df1
+------------+---------+-----+
| student_id | name    | age |
+------------+---------+-----+
| 1          | Mason   | 8   |
| 2          | Ava     | 6   |
| 3          | Taylor  | 15  |
| 4          | Georgia | 17  |
+------------+---------+-----+
df2
+------------+------+-----+
| student_id | name | age |
+------------+------+-----+
| 5          | Leo  | 7   |
| 6          | Alex | 7   |
+------------+------+-----+
输出:
+------------+---------+-----+
| student_id | name    | age |
+------------+---------+-----+
| 1          | Mason   | 8   |
| 2          | Ava     | 6   |
| 3          | Taylor  | 15  |
| 4          | Georgia | 17  |
| 5          | Leo     | 7   |
| 6          | Alex    | 7   |
+------------+---------+-----+
解释:
两个 DataFrame 被垂直堆叠,它们的行被合并。

解法

方法一

Python3

import pandas as pd


def concatenateTables(df1: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame:
    return pd.concat([df1, df2], ignore_index=True)