comments | difficulty | edit_url | tags | |
---|---|---|---|---|
true |
Easy |
|
DataFramedf1
+-------------+--------+ | Column Name | Type | +-------------+--------+ | student_id | int | | name | object | | age | int | +-------------+--------+ DataFramedf2
+-------------+--------+ | Column Name | Type | +-------------+--------+ | student_id | int | | name | object | | age | int | +-------------+--------+
Write a solution to concatenate these two DataFrames vertically into one DataFrame.
The result format is in the following example.
Example 1:
Input: df1 +------------+---------+-----+ | student_id | name | age | +------------+---------+-----+ | 1 | Mason | 8 | | 2 | Ava | 6 | | 3 | Taylor | 15 | | 4 | Georgia | 17 | +------------+---------+-----+ df2 +------------+------+-----+ | student_id | name | age | +------------+------+-----+ | 5 | Leo | 7 | | 6 | Alex | 7 | +------------+------+-----+ Output: +------------+---------+-----+ | student_id | name | age | +------------+---------+-----+ | 1 | Mason | 8 | | 2 | Ava | 6 | | 3 | Taylor | 15 | | 4 | Georgia | 17 | | 5 | Leo | 7 | | 6 | Alex | 7 | +------------+---------+-----+ Explanation: The two DataFramess are stacked vertically, and their rows are combined.
import pandas as pd
def concatenateTables(df1: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame:
return pd.concat([df1, df2], ignore_index=True)