Skip to content

Commit

Permalink
fix dolt docs (flyteorg#327)
Browse files Browse the repository at this point in the history
Signed-off-by: Samhita Alla <[email protected]>
  • Loading branch information
samhita-alla authored Jul 20, 2021
1 parent b197cd9 commit d6bc023
Show file tree
Hide file tree
Showing 3 changed files with 56 additions and 31 deletions.
11 changes: 5 additions & 6 deletions cookbook/integrations/flytekit_plugins/dolt/README.rst
Original file line number Diff line number Diff line change
@@ -1,27 +1,26 @@
Dolt
===============================================
====

The `DoltTable` plugin is a wrapper that uses `Dolt <https://github.com/dolthub/dolt>`__ to move data between
`pandas.DataFrame`'s at execution time and database tables at rest.
The ``DoltTable`` plugin is a wrapper that uses `Dolt <https://github.com/dolthub/dolt>`__ to move data between
``pandas.DataFrame``'s at execution time and database tables at rest.

Installation
------------

The dolt plugin and dolt command line tool are required to run these examples:

.. code:: bash
pip install flytekitplugins.dolt
sudo bash -c 'curl -L https://github.com/dolthub/dolt/releases/latest/download/install.sh | sudo bash'
Dolt requires a user configuration to run `init`:
Dolt requires a user configuration to run ``init``:

.. code:: bash
dolt config --global --add user.email <email>
dolt config --global --add user.name <name>
These demos assume a `foo` database has been created locally:
These demos assume a ``foo`` database has been created locally:

.. code:: bash
Expand Down
54 changes: 33 additions & 21 deletions cookbook/integrations/flytekit_plugins/dolt/dolt_branch_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,7 @@
Dolt Branches
-------------
In this example we'll show you how to use DoltTable
along with Dolt's branch feature.
In this example, we'll show how to use DoltTable along with Dolt's ``Branch`` feature.
"""
import os
Expand All @@ -18,18 +17,19 @@

# %%
# A Simple Workflow
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# ^^^^^^^^^^^^^^^^^
# We will run a simple data workflow:
# 1. Create a `users` table with `name` and `count` columns.
# 2. Filter the `users` table for users with `count > 5`.
# 3. Record the filtered user's names in a `big_users` table.
#
# 1. Create a ``users`` table with ``name`` and ``count`` columns.
# 2. Filter the ``users`` table for users with ``count > 5``.
# 3. Record the filtered users' names in a ``big_users`` table.

# %%
# Database Configuration
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# ======================
# Let's define our database configuration.
# Our `DoltConfig`s reference a `foo` folder containing
# our database. Either a `tablename` or a `sql` select
# Our ``DoltConfig`` references a ``foo`` folder containing
# our database. Use either a ``tablename`` or a ``sql`` select
# statement to fetch data.

doltdb_path = os.path.join(os.path.dirname(__file__), "foo")
Expand Down Expand Up @@ -58,21 +58,20 @@ def generate_confs(a: int) -> typing.Tuple[DoltConfig, DoltConfig, DoltConfig]:
return users_conf, query_users, big_users_conf

# %%
# A `DoltTable` is an extension of `DoltConfig` that wraps
# a `pandas.DataFrame` -- accessible via the `DoltTable.data`
# attribute at execution time.
# .. tip ::
# A ``DoltTable`` is an extension of ``DoltConfig`` that wraps a ``pandas.DataFrame`` -- accessible via the ``DoltTable.data``
# attribute at execution time.

# %%
# Type Annotating Tasks and Workflows
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

# ===================================
# We can turn our data processing pipeline into a Flyte workflow
# by decorating functions with the :py:func:`~flytekit.task` and :py:func:`~flytekit.workflow` decorators.
# Annotating the inputs and outputs of those functions with dolt schemas
# Annotating the inputs and outputs of those functions with Dolt schemas
# indicates how to save and load data between tasks.

# The `DoltTable.data` attribute loads dataframes for input arguments.
# Return types of `DoltTable` save the `data` to the
#
# The ``DoltTable.data`` attribute loads dataframes for input arguments.
# Return types of ``DoltTable`` save the ``data`` to the
# Dolt database given a connection configuration.

@task
Expand Down Expand Up @@ -110,7 +109,20 @@ def wf(a: int) -> int:
result = wf(a=a)
print(f"Running wf(), returns int\n{result}\n{type(result)}")

# %% Results
# ^^^^^^^^^^^^
# %%
# We will run this workflow twice:
#
# .. prompt:: $
#
# python branch_example.py 2
#
# .. prompt:: $
#
# python branch_example.py 3
#
# Which creates distinct branches for our two ``a`` values:
#
# .. prompt:: $
#
# Output results are split between branches:
# cd foo
# dolt branch
Original file line number Diff line number Diff line change
Expand Up @@ -2,35 +2,42 @@
Quickstart
----------
In this example we'll show you how to use DoltTable
to annotate dataframe inputs and outputs in your flyte tasks.
In this example, we'll learn how to use ``DoltTable`` to annotate DataFrame inputs and outputs in the Flyte tasks.
"""
# %%
# First, let's import the libraries.
import os
import sys
import typing

from flytekitplugins.dolt.schema import DoltConfig, DoltTable
from flytekit import task, workflow
import pandas as pd

# %%
# Next, we initialize Dolt's config.
doltdb_path = os.path.join(os.path.dirname(__file__), "foo")

rabbits_conf = DoltConfig(
db_path=doltdb_path,
tablename="rabbits",
)

# %%
# We define a task to create a DataFrame and store the table in Dolt.
@task
def populate_rabbits(a: int) -> DoltTable:
rabbits = [("George", a), ("Alice", a * 2), ("Sugar Maple", a * 3)]
df = pd.DataFrame(rabbits, columns=["name", "count"])
return DoltTable(data=df, config=rabbits_conf)

# %%
# ``unwrap_rabbits`` task does the exact opposite -- reading the table from Dolt and returning a DataFrame.
@task
def unwrap_rabbits(table: DoltTable) -> pd.DataFrame:
return table.data

# %%
# Our workflow combines the above two tasks:
@workflow
def wf(a: int) -> pd.DataFrame:
rabbits = populate_rabbits(a=a)
Expand All @@ -44,3 +51,10 @@ def wf(a: int) -> pd.DataFrame:
a = int(sys.argv[1])
result = wf(a=a)
print(f"Running wf(), returns dataframe\n{result}\n{result.dtypes}")

# %%
# Run this task by issuing the following command:
#
# .. prompt:: $
#
# python quickstart_example.py 1

0 comments on commit d6bc023

Please sign in to comment.