-
Notifications
You must be signed in to change notification settings - Fork 80
Eclipse Test Framework
This document describes how to make use of Eclipse Test Framework. This framework is used by the Eclipse Project Platform to run their unit and integration tests in an automated way, as described in Platform-releng/Automated_Testing, but may be used by others to automate your testing, if you'd like. Its not intended as a "delivered API" in the normal sense of other Platform deliverables, but if you find it helpful, you are welcome to reuse it.
Remember, if you simply wish to write and run JUnit tests interactively from an Eclipse workbench, there are easy ways to do that, and they are well described in Eclipse Help:
The Testing Framework described on this page is comprised of the org.eclipse.test plugin and the org.eclipse.ant.optional.junit fragment, a library.xml file, and a JUNIT.XSL file.
The plugin and fragment are available from the Eclipse Project Releng Git repository and are included in the eclipse-test-framework-.zip from each downloads page. They are also available in our p2 software repository, such as at http://download.eclipse.org/eclipse/updates/4.3 so you can install the test framework into an existing eclipse platform, with a batch command, similar to the following:
<nowiki>
./eclipse/eclipse -consolelog -nosplash -data workspace-installtests \
-application org.eclipse.equinox.p2.director \
-repository http://download.eclipse.org/eclipse/updates/4.3/ \
-installIU org.eclipse.test.feature.group
</nowiki>
The two "text" files are also available from the Git repository, and you may use these "as is", or provide your own customized versions. You can them dynamically directly from the repository using commands such as 'wget' or ant tasks such as <get>
If you decide not to use the "pre-built" versions available on each download page, you can compile your own version of org.eclipse.test. The org.eclipse.ant.optional.junit fragment does not contain any source and can be used as is from the repository (it simply provide a "fragment" for ant to make use of junit).
- Turn off automatic builds. Window->Preferences->Workbench and uncheck "Perform build automatically on resource modification"
- Load org.eclipse.test into your workspace.
- Right-click on the org.eclipse.test project in either the Navigator or Packages view. Select 'Rebuild Project' from the context menu. This will compile the entire org.eclipse.test plugin.
- Finally, copy the org.eclipse.test plugin into your target Eclipse.
- The org.eclipse.ant.optional.junit fragment only needs to be present in the environment of the Eclipse that is overseeing the test process. If you are running the test script from within the Workbench, this means that the fragments need to be present within your development Eclipse. If you are running the tests from the command line, then the fragments will need to be present in your target Eclipse.
Follow the steps given above to build and install all of the necessary plugins and fragments. Please note that the current version of the test framework is not compatible with the PDE notion of self-hosting. If you want to run the tests, you will need to setup a full target Eclipse so that the testing framework can detect everything that is needed.
If you are writing tests for one or more Eclipse plugins, then you should create a separate plugin for tests. The test plugin will contain all of the tests that will be run on your development plugins, as well as defining how those tests get run.
Once a test plugin has been created, you must then create an Ant script that will run all of the tests. Create a file called 'test.xml' in the root of your plug-in or bundle. This is an Ant file that defines how each test is going to be run. Typically, the 'test.xml' file will contain targets for setting up the test run, executing the tests, cleaning up afterwards, and running the entire process. Be sure it is marked to be "exported" in the build.properties file when your test bundle is built.
If you are converting an existing set of tests to use the new framework, the actual tests that have been written should not need much change.
If you have tests in multiple plugins, move these to a single test plug-in for your component.
Make sure that the tests are defined in a plug-in. This is probably the most common cause of confusion in the entire test process. Your tests need to be in a plug-in so that Eclipse can find them when it tries to load them.
Also, your test plugin needs to be installed in "directory" form, not as a jar file, since the test framework needs to find the 'test.xml' file on the filesystem. Depending on how you build your tests, you need to use the Eclipse-BundleShape: dir directive in your plugin's MANIFEST.MF file or do not specify unpack="false" in your feature.xml.
Creating new JUnit tests for an Eclipse plugin should be no more difficult than writing standard JUnit tests. Since the framework allows tests to be run inside of a working Eclipse, any tests that you write have available to them any of the methods supplied by the Eclipse platform, provided that you add the appropriate dependencies to your tests' manifest.mf file.
You should keep in mind the number of times that Eclipse needs to be started. Launching Eclipse has a substantial cost in terms of runtime. To minimize the number of times the platform is started, you should consider writing a TestSuite called AllTests for each of your test plugins. AllTests should invoke each of the tests that you want to run for a particular plugin. The 'test.xml' file can then run the AllTests class, which will run all of your tests, but the platform will only ever be started once for each of your test plugins.
Note: Sometimes tests involve shutting down, restarting, and testing the state of metadata that was written to disk. These session tests will require Eclipse to be launched several times in sequence, which will increase the runtime of your tests. This cannot be avoided.
Right click on the test.xml file and select 'Run Ant...' from the pull-down menu. The Running Ant dialog box pops up. From the list of targets, select the one that runs all of your tests. If you are using the example file provided below, this target is called 'Run', and will be selected by default. Hit the 'Finish' button to start the test process.
When the test suites are invoked automatically, they are run from command line. From the ${eclipse-home} directory, the command to use is:
java -jar
plugins\org.eclipse.equinox.launcher_
.jar
-application org.eclipse.ant.core.antRunner -buildfile
${test-plugin-path}\test.xml -Declipse-home=${eclipse-home}
-Dos=
-Dws=
-Darch=
Individual tests can also be invoked directly. From the ${eclipse-home} directory, use the command:
java -jar
plugins\org.eclipse.equinox.launcher_
.jar
-application ${launcher} -os
-ws
-arch
-dev bin
-testpluginname ${plugin-name} -classname ${test-classname}
formattter=org.apache.tools.ant.taskdefs.optional.junit.XMLJUnitResultFormatter,<path
to output file with .xml extension>
where ${launcher} is one of: org.eclipse.test.uitestapplication or org.eclipse.test.coretestapplication depending on whether or not you want to run your tests within an active Workbench.
By default, output from each test run is logged as XML. For each test
that is run, the output is logged into the file called
Many plugin tests will not need the Workbench active in order to run. Indeed, only the minimum number of plugins needed to run the plugin being tested need to be present when testing in a target Eclipse. There are two different Ant targets provided for running Eclipse plugin tests. One target starts the entire Workbench. The other starts Eclipse with the minimum number of plugins needed. It is up to you to decide which target is most appropriate. For examples, look at the "ui-test" and "core-test" targets below.
Some low-level tests for the Eclipse platform take actions that are not normally possible inside of Eclipse. An example of this behaviour would be disposing the display. While this action can be performed while running the UI, it will also kill the UI for the copy of Eclipse that is running, and cause errors when the Workbench tries to shutdown. If you need to test disposing the display, or other similar actions, your tests should be running without a UI.
It is very easy to forget to define your tests inside of a plugin. If your tests will not load properly, make sure that a plug-in manifest exists in your test project, and also that the plugin is being loaded by the platform. Make sure that all of the dependencies are satisfied for your test plugin.
The org.eclipse.test plugin and library.xml file defines many useful Ant tasks/targets to aid developers in writing their test.xml scripts. Currently, there is only Ant targets defined, which can be called using Ant's built-in task. To use these targets, your test.xml needs access to the library.xml file. Depending on your setup, you may be able to add something like the following to the top of your script, and reference the ${library-file} property when calling :
The targets that are defined are:
-
ui-test - This target runs a JUnit test suite inside of an
Eclipse Workbench. This target is mainly for testing plugins that
use the Eclipse UI and JFace. The output of the test pass is
automatically logged in an XML file called ${classname}.xml. It
takes four arguments:
- data-dir - The data directory of the Eclipse that gets run
- plugin-name - The name of the plugin that the test suite is defined in
- classname - The name of the class that the test suite is defined in
- vmargs - An optional argument string to pass to the VM running the tests
(For a complete list of parameters that can be used in your 'test.xml' file see the documentation in the 'library.xml' file.)
For example, the following code will run the test org.eclipse.foo.bar.MyTest in the plugin org.eclipse.foo in a new Eclipse workbench. It passes the string "-Dbaz=true" to the VM. The Eclipse stores its metadata in the directory "data-folder".
<ant target="ui-test" antfile="${library-file}" dir="${eclipse-home}">
<property name="data-dir" value="data-folder"/>
<property name="plugin-name" value="org.eclipse.foo"/>
<property name="classname" value="org.eclipse.foo.bar.MyTest"/>
<property name="vmargs" value="-Dbaz=true"/>
</ant>
-
core-test - This target runs a JUnit test suite inside of an
IPlatformRunnable. This target is for testing plugins that use the
Eclipse platform, but do not require a UI to be running. The output
of the test pass is automatically logged in an XML file called
${classname}.xml. It takes four arguments:
- data-dir - The data directory of the Eclipse that gets run
- plugin-name - The name of the plugin that the test suite is defined in
- classname - The name of the class that the test suite is defined in
- vmargs - An optional argument string to pass to the VM running the tests
For example, the following code will run the test org.eclipse.foo.bar.MyTest in the plugin org.eclipse.foo in a headless Eclipse. It passes the string "-Dbaz=true" to the VM. The Eclipse stores its metadata in the directory "data-folder".
<ant target="core-test" antfile="${library-file}" dir="${eclipse-home}">
<property name="data-dir" value="data-folder"/>
<property name="plugin-name" value="org.eclipse.foo"/>
<property name="classname" value="org.eclipse.foo.bar.MyTest"/>
<property name="vmargs" value="-Dbaz=true"/>
</ant>
-
collect - This target collects the XML files that are produced
over the course of the test script. It takes two arguments:
- includes - A pattern matching all XML files to be included in the test report. This argument is typically "org*.xml"
- output-file - The filename where the output of the test gets stored. For the automated build process, this file should be ${pluginname}.xml, and be located in the ECLIPSE_HOME directory.
For example, the following code collects all of the files matching the pattern "org*.xml" in the directory ${eclipse-home}, into the file named "logfile.xml".
<ant target="collect" antfile="${library-file}" dir="${eclipse-home}">
<property name="includes" value="org*.xml"/>
<property name="output-file" value="logfile.xml"/>
</ant>
The following example is the 'test.xml' file from the org.eclipse.jdt.ui.tests.refactoring plugin. This file controls all of the automated testing that is done for the org.eclipse.jdt.ui.tests.refactoring plugin. It can be run from inside of Eclipse or from the command line. It is intended to serve as a template file for testing any other plugin.
Notice that the structure of the file roughly mirrors that of a JUnit test. Targets are defined for setting up the tests, defining what needs to be done, cleaning up after the tests, and running everything in the right order.
<?xml version="1.0" encoding="UTF-8"?>
<project name="testsuite" default="run" basedir=".">
<!-- The property ${eclipse-home} should be passed into this script -->
<!-- Set a meaningful default value for when it is not. -->
<property name="eclipse-home" value="${basedir}\..\.."/>
<!-- sets the properties eclipse-home, and library-file -->
<property name="plugin-name" value="org.eclipse.jdt.ui.tests.refactoring"/>
<property name="library-file"
value="${basedir}/library.xml"/>
<!-- This target holds all initialization code that needs to be done for -->
<!-- all tests that are to be run. Initialization for individual tests -->
<!-- should be done within the body of the suite target. -->
<target name="init">
<tstamp/>
<delete>
<fileset dir="${eclipse-home}" includes="org*.xml"/>
</delete>
</target>
<!-- This target defines the tests that need to be run. -->
<target name="suite">
<property name="refactoring-folder"
value="${eclipse-home}/refactoring_folder"/>
<delete dir="${refactoring-folder}" quiet="true"/>
<ant target="ui-test" antfile="${library-file}" dir="${eclipse-home}">
<property name="data-dir" value="${refactoring-folder}"/>
<property name="plugin-name" value="${plugin-name}"/>
<property name="classname"
value="org.eclipse.jdt.ui.tests.refactoring.all.AllAllRefactoringTests"/>
</ant>
</target>
<!-- This target holds code to cleanup the testing environment after -->
<!-- after all of the tests have been run. You can use this target to -->
<!-- delete temporary files that have been created. -->
<target name="cleanup">
</target>
<!-- This target runs the test suite. Any actions that need to happen -->
<!-- after all the tests have been run should go here. -->
<target name="run" depends="init,suite,cleanup">
<ant target="collect" antfile="${library-file}" dir="${eclipse-home}">
<property name="includes" value="org*.xml"/>
<property name="output-file" value="${plugin-name}.xml"/>
</ant>
</target>
</project>
The test suites need to know where the root of the eclipse install is on
the file system (the ECLIPSE_HOME variable). However, this variable is
only defined in JDT. The
When you run a TestSuite using the standard JUnit, it normally outputs a series of dots to the console so that you can track the TestSuite's progress. It is not possible to add this feature to the automated testing process at this point in time.
Ant expects there to be a java executable on the system path.
Furthermore, the executable must be a real file, not a symbolic link. If
the test framework is throwing an exception java.io.IOException: java: not found
, ensure that the java executable is on your system path.
The testing framework currently has no knowledge of PDE. In order to run the automated you must be running a self hosting environment with a full development and target Eclipse.