Skip to content

Commit

Permalink
Implement NaiveVariancePredictionIntervals (#109)
Browse files Browse the repository at this point in the history
* added implementation

* added test for backtest

* updated base tests

* added tests

* updated documentation

* updated changelog

* review fixes
  • Loading branch information
brsnw250 authored Oct 13, 2023
1 parent 2651829 commit 3791c4a
Show file tree
Hide file tree
Showing 7 changed files with 327 additions and 14 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Add `LimitTransform` ([#63](https://github.com/etna-team/etna/pull/63))
- Add config for Codecov to control CI ([#80](https://github.com/etna-team/etna/pull/80))
- Add `EventTransform` ([#78](https://github.com/etna-team/etna/pull/78))
- `NaiveVariancePredictionIntervals` method for prediction quantiles estimation ([#109](https://github.com/etna-team/etna/pull/109))

### Changed
-
Expand Down
1 change: 1 addition & 0 deletions docs/source/api_reference/experimental.rst
Original file line number Diff line number Diff line change
Expand Up @@ -34,3 +34,4 @@ Prediction Intervals:
:template: class.rst

prediction_intervals.BasePredictionIntervals
prediction_intervals.NaiveVariancePredictionIntervals
1 change: 1 addition & 0 deletions etna/experimental/prediction_intervals/__init__.py
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
from etna.experimental.prediction_intervals.base import BasePredictionIntervals
from etna.experimental.prediction_intervals.naive_variance import NaiveVariancePredictionIntervals
122 changes: 122 additions & 0 deletions etna/experimental/prediction_intervals/naive_variance.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
from typing import Sequence

import numpy as np
import pandas as pd
import scipy.stats as scs

from etna.datasets import TSDataset
from etna.experimental.prediction_intervals import BasePredictionIntervals
from etna.loggers import tslogger
from etna.pipeline import BasePipeline
from etna.pipeline.base import _DummyMetric


class NaiveVariancePredictionIntervals(BasePredictionIntervals):
"""Estimate prediction variance based on historical residuals.
``NaiveVariancePredictionIntervals`` provides the possibility to estimate prediction quantiles using the following algorithm:
1. Compute the residuals matrix :math:`r_{it} = \hat y_{it} - y_{it}` using k-fold backtest, where :math:`i` is fold index.
2. Estimate variance for each step in the prediction horizon :math:`v_t = \\frac{1}{k} \sum_{i = 1}^k r_{it}^2`.
3. Use :math:`z` scores and estimated variance to compute corresponding quantiles.
`Reference implementation <https://www.sktime.net/en/stable/api_reference/auto_generated/sktime.forecasting.naive.NaiveVariance.html>`_.
"""

def __init__(self, pipeline: BasePipeline, stride: int = 1):
"""Initialize instance of ``NaiveVariancePredictionIntervals`` with given parameters.
Parameters
----------
pipeline:
Base pipeline or ensemble for prediction intervals estimation.
stride:
Number of points between folds.
"""
if stride <= 0:
raise ValueError("Parameter `stride` must be positive!")

self.stride = stride

super().__init__(pipeline=pipeline)

def _forecast_prediction_interval(
self, ts: TSDataset, predictions: TSDataset, quantiles: Sequence[float], n_folds: int
) -> TSDataset:
"""Estimate and store prediction intervals.
Parameters
----------
ts:
Dataset to forecast.
predictions:
Dataset with point predictions.
quantiles:
Levels of prediction distribution.
n_folds:
Number of folds to use in the backtest for prediction interval estimation.
Returns
-------
:
Dataset with predictions.
"""
residuals = self._compute_resids_matrices(ts=ts, n_folds=n_folds)

variance = self._estimate_variance(residual_matrices=residuals)

borders = []
for q in quantiles:
z_score = scs.norm.ppf(q=q)
interval_border = predictions[:, :, "target"] + np.sqrt(variance) * z_score
interval_border.rename({"target": f"target_{q:.4g}"}, inplace=True, axis=1)
borders.append(interval_border)

quantiles_df = pd.concat(borders, axis=1)
predictions.add_prediction_intervals(prediction_intervals_df=quantiles_df)
return predictions

def _compute_resids_matrices(self, ts: TSDataset, n_folds: int) -> np.ndarray:
"""Estimate residuals matrices with backtest.
Parameters
----------
ts:
Dataset to estimate residuals.
n_folds:
Number of folds for backtest.
Returns
-------
:
Residuals matrices for each segment. Array with shape: ``(n_folds, horizon, n_segments)``.
"""
with tslogger.disable():
_, backtest_forecasts, _ = self.backtest(
ts=ts, metrics=[_DummyMetric()], n_folds=n_folds, stride=self.stride
)

residuals = backtest_forecasts.loc[:, pd.IndexSlice[:, "target"]] - ts[backtest_forecasts.index, :, "target"]

# shape: (n_folds, horizon, n_segments)
residual_matrices = residuals.values.reshape((-1, self.horizon, len(ts.segments)))
return residual_matrices

def _estimate_variance(self, residual_matrices: np.ndarray) -> np.ndarray:
"""Estimate variance from residuals matrices.
Parameters
----------
residual_matrices:
Multidimensional array with shape ``(n_folds, horizon, n_segments)``.
Returns
-------
:
Estimated variance. Array with shape ``(horizon, n_segments)``.
"""
variance = np.mean(np.power(residual_matrices, 2), axis=0)
return variance
23 changes: 23 additions & 0 deletions tests/test_experimental/test_prediction_intervals/common.py
Original file line number Diff line number Diff line change
@@ -1,17 +1,21 @@
from typing import Dict
from typing import Sequence

import numpy as np
import pandas as pd

from etna.datasets import TSDataset
from etna.distributions import BaseDistribution
from etna.distributions import FloatDistribution
from etna.experimental.prediction_intervals import BasePredictionIntervals
from etna.models import CatBoostPerSegmentModel
from etna.models import NaiveModel
from etna.models import SARIMAXModel
from etna.pipeline import BasePipeline
from etna.pipeline import Pipeline
from etna.transforms import AddConstTransform
from etna.transforms import DateFlagsTransform
from etna.transforms import LagTransform


def get_naive_pipeline(horizon):
Expand All @@ -23,6 +27,25 @@ def get_naive_pipeline_with_transforms(horizon):
return Pipeline(model=NaiveModel(), transforms=transforms, horizon=horizon)


def get_catboost_pipeline(horizon):
transforms = [LagTransform(in_column="target", lags=list(range(horizon, 2 * horizon)))]
return Pipeline(model=CatBoostPerSegmentModel(), transforms=transforms, horizon=horizon)


def get_arima_pipeline(horizon):
return Pipeline(model=SARIMAXModel(order=(1, 0, 1)), horizon=horizon)


def run_base_pipeline_compat_check(ts, intervals_pipeline, expected_columns):
intervals_pipeline.fit(ts=ts)

intervals_pipeline_pred = intervals_pipeline.forecast(prediction_interval=True)
columns = intervals_pipeline_pred.df.columns.get_level_values("feature")

assert len(expected_columns - set(columns)) == 0
assert np.sum(intervals_pipeline_pred.df.isna().values) == 0


class DummyPredictionIntervals(BasePredictionIntervals):
"""Dummy class for testing."""

Expand Down
35 changes: 21 additions & 14 deletions tests/test_experimental/test_prediction_intervals/test_base.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
import numpy as np
import pandas as pd
import pytest

Expand All @@ -15,27 +14,18 @@
from etna.pipeline import AutoRegressivePipeline
from etna.pipeline import HierarchicalPipeline
from etna.pipeline import Pipeline
from etna.pipeline.base import _DummyMetric
from etna.reconciliation import BottomUpReconciliator
from etna.transforms import DateFlagsTransform
from etna.transforms import DeseasonalityTransform
from tests.test_experimental.test_prediction_intervals.common import DummyPredictionIntervals
from tests.test_experimental.test_prediction_intervals.common import get_naive_pipeline
from tests.test_experimental.test_prediction_intervals.common import get_naive_pipeline_with_transforms
from tests.test_experimental.test_prediction_intervals.common import run_base_pipeline_compat_check
from tests.test_experimental.test_prediction_intervals.utils import assert_sampling_is_valid
from tests.test_pipeline.utils import assert_pipeline_equals_loaded_original


def run_base_pipeline_compat_check(ts, pipeline, expected_columns):
intervals_pipeline = DummyPredictionIntervals(pipeline=pipeline)
intervals_pipeline.fit(ts=ts)

intervals_pipeline_pred = intervals_pipeline.forecast(prediction_interval=True)
columns = intervals_pipeline_pred.df.columns.get_level_values("feature")

assert len(expected_columns - set(columns)) == 0
assert np.sum(intervals_pipeline_pred.df.isna().values) == 0


def test_pipeline_ref_initialized(naive_pipeline):
intervals_pipeline = DummyPredictionIntervals(pipeline=naive_pipeline)

Expand Down Expand Up @@ -85,6 +75,17 @@ def test_forecast_with_fitted_pipeline(example_tsds, pipeline_name, request):
pd.testing.assert_frame_equal(intervals_pipeline_pred.df, pipeline_pred.df)


@pytest.mark.parametrize("pipeline_name", ("naive_pipeline", "naive_pipeline_with_transforms"))
def test_backtest(example_tsds, pipeline_name, request):
pipeline = request.getfixturevalue(pipeline_name)
_, pipeline_results, _ = pipeline.backtest(ts=example_tsds, metrics=[_DummyMetric()])

intervals_pipeline = DummyPredictionIntervals(pipeline=pipeline)
_, intervals_pipeline_results, _ = intervals_pipeline.backtest(ts=example_tsds, metrics=[_DummyMetric()])

pd.testing.assert_frame_equal(pipeline_results, intervals_pipeline_results)


@pytest.mark.parametrize(
"expected_columns",
({"target", "target_lower", "target_upper"},),
Expand All @@ -103,8 +104,11 @@ def test_forecast_with_fitted_pipeline(example_tsds, pipeline_name, request):
),
)
def test_pipelines_forecast_intervals(product_level_constant_hierarchical_ts, pipeline, expected_columns):
intervals_pipeline = DummyPredictionIntervals(pipeline=pipeline)
run_base_pipeline_compat_check(
ts=product_level_constant_hierarchical_ts, pipeline=pipeline, expected_columns=expected_columns
ts=product_level_constant_hierarchical_ts,
intervals_pipeline=intervals_pipeline,
expected_columns=expected_columns,
)


Expand All @@ -121,7 +125,10 @@ def test_pipelines_forecast_intervals(product_level_constant_hierarchical_ts, pi
),
)
def test_ensembles_forecast_intervals(example_tsds, ensemble, expected_columns):
run_base_pipeline_compat_check(ts=example_tsds, pipeline=ensemble, expected_columns=expected_columns)
intervals_pipeline = DummyPredictionIntervals(pipeline=ensemble)
run_base_pipeline_compat_check(
ts=example_tsds, intervals_pipeline=intervals_pipeline, expected_columns=expected_columns
)


@pytest.mark.parametrize(
Expand Down
Loading

0 comments on commit 3791c4a

Please sign in to comment.