A state-of-the-art solver for (geometrical) Packing Problems.
PackingSolver solves the following problem types:
Problem types | Examples |
---|---|
rectangleguillotine
|
|
rectangle
|
|
boxstacks
|
|
onedimensional
|
|
irregular
|
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release
cmake --build build --config Release --parallel && cmake --install build --config Release --prefix install
Features:
- Objectives:
- Knapsack
- Open dimension X
- Open dimension Y
- Bin packing
- Bin packing with leftovers
- Variable-sized bin packing
- Item types:
- With or without rotations
- Stacks (precedence constraints on the order in which items are extracted)
- Bins types:
- May contain defects
- Allow or forbid cutting through a defect
- Two- and three-staged, exact, non-exact, roadef2018 and homogenous patterns
- First cut vertical, horizontal or any
- Trims
- Cut thickness
- Minimum distance between consecutive 1-cuts
- Maximum distance between consecutive 1-cuts
- Minimum distance between consecutive 2-cuts
- Minimum distance between cuts
- Maximum number of consecutive 2-cuts
Example:
./install/bin/packingsolver_rectangleguillotine \
--verbosity-level 1 \
--items data/rectangle/alvarez2002/ATP35_items.csv \
--bins data/rectangle/alvarez2002/ATP35_bins.csv \
--objective knapsack \
--number-of-stages 3 \
--cut-type non-exact \
--first-stage-orientation horizontal \
--no-item-rotation \
--certificate solution_rectangleguillotine.csv \
--time-limit 1
=================================
PackingSolver
=================================
Problem type
------------
RectangleGuillotine
Instance
--------
Objective: Knapsack
Number of item types: 29
Number of items: 153
Number of bin types: 1
Number of bins: 1
Number of stacks: 29
Number of defects: 0
Number of stages: 3
Cut type: NonExact
First stage orientation: Horizontal
min1cut: 0
max1cut: -1
min2cut: 0
max2cut: -1
Minimum waste: 1
one2cut: 0
Cut through defects: 0
Cut thickness: 0
Time Profit # items Comment
---- ------ ------- -------
0.001 68970 1 TS g 5 d Horizontal q 1
0.002 72000 1 TS g 5 d Horizontal q 1
0.009 140970 2 TS g 5 d Horizontal q 1
0.010 144000 2 TS g 5 d Horizontal q 1
0.011 212970 3 TS g 5 d Horizontal q 1
0.012 216000 3 TS g 5 d Horizontal q 1
0.013 284970 4 TS g 5 d Horizontal q 1
0.014 292395 5 TS g 5 d Horizontal q 1
0.015 306705 5 TS g 5 d Horizontal q 1
0.016 348839 5 TS g 5 d Horizontal q 1
0.017 358042 6 TS g 5 d Horizontal q 1
0.018 372343 6 TS g 5 d Horizontal q 1
0.019 379768 7 TS g 5 d Horizontal q 1
0.020 388389 7 TS g 5 d Horizontal q 1
0.021 408379 7 TS g 5 d Horizontal q 1
0.022 415804 8 TS g 5 d Horizontal q 1
0.023 424425 8 TS g 5 d Horizontal q 1
0.024 444415 8 TS g 5 d Horizontal q 1
0.025 451840 9 TS g 5 d Horizontal q 1
0.026 460461 9 TS g 5 d Horizontal q 1
0.027 480451 9 TS g 5 d Horizontal q 1
0.029 496497 10 TS g 5 d Horizontal q 1
0.030 502186 10 TS g 5 d Horizontal q 1
0.031 523921 11 TS g 5 d Horizontal q 1
0.032 539967 12 TS g 5 d Horizontal q 1
0.033 547003 9 TS g 5 d Horizontal q 2
0.034 561304 9 TS g 5 d Horizontal q 2
0.035 581548 9 TS g 5 d Horizontal q 2
0.036 588973 10 TS g 5 d Horizontal q 2
0.036 597058 10 TS g 5 d Horizontal q 2
0.037 599368 11 TS g 5 d Horizontal q 2
0.039 602118 14 TS g 4 d Horizontal q 2
0.043 605793 11 TS g 5 d Horizontal q 9
0.049 606147 13 TS g 5 d Horizontal q 19
0.059 606672 12 TS g 5 d Horizontal q 42
0.074 607062 14 TS g 5 d Horizontal q 94
0.104 609550 15 TS g 5 d Horizontal q 211
0.154 610101 31 TS g 4 d Horizontal q 141
0.155 610578 31 TS g 4 d Horizontal q 141
0.156 610787 32 TS g 4 d Horizontal q 141
0.212 611135 34 TS g 4 d Horizontal q 211
0.294 614725 31 TS g 4 d Horizontal q 316
0.304 614967 42 TS g 4 d Horizontal q 316
0.453 616880 16 TS g 5 d Horizontal q 1139
0.874 619897 28 TS g 4 d Horizontal q 1066
Final statistics
----------------
Time (s): 1.0037
Solution
--------
Number of items: 28 / 153 (18.3007%)
Item area: 619897 / 4322082 (14.3426%)
Item profit: 619897 / 4.32208e+06 (14.3426%)
Number of bins: 1 / 1 (100%)
Bin cost: 623040
Waste: 3143
Waste (%): 0.504462
Full waste: 3143
Full waste (%): 0.504462
Visualize solution:
python3 scripts/visualize_rectangleguillotine.py solution_rectangleguillotine.csv
Features:
- Objectives:
- Knapsack
- Open dimension X
- Open dimension Y
- Bin packing
- Bin packing with leftovers
- Variable-sized bin packing
- Item types:
- With or without rotations
- Bin types:
- May contain defects
- Maximum weight
- Unloading constraints: only horizontal/vertical movements, increasing x/y
Example:
./install/bin/packingsolver_rectangle \
--verbosity-level 1 \
--items data/rectangle/afsharian2014/450-200.txt/C22M25R10N15_D4_items.csv \
--bins data/rectangle/afsharian2014/450-200.txt/C22M25R10N15_D4_bins.csv \
--defects data/rectangle/afsharian2014/450-200.txt/C22M25R10N15_D4_defects.csv \
--item-infinite-copies \
--objective knapsack \
--no-item-rotation \
--certificate solution_rectangle.csv \
--time-limit 5
=================================
PackingSolver
=================================
Problem type
------------
Rectangle
Instance
--------
Objective: Knapsack
Number of item types: 25
Number of items: 247
Number of bin types: 1
Number of bins: 1
Number of groups: 1
Number of defects: 4
Unloading constraint: None
Total item area: 2576510
Total item width: 33005
Total item height: 17382
Smallest item width: 47
Smallest item height: 21
Total bin area: 90000
Total item weight: 0
Total bin weight: 0
Time Profit # items Comment
---- ------ ------- -------
0.001 10773 1 TS g 4 d X q 1
0.002 17052 1 TS g 4 d X q 1
0.002 23765 1 TS g 4 d X q 1
0.003 27825 2 TS g 4 d X q 1
0.003 30429 2 TS g 4 d X q 1
0.004 34538 2 TS g 4 d Y q 1
0.004 39178 3 TS g 4 d Y q 1
0.005 40237 4 TS g 4 d X q 1
0.005 43421 2 TS g 5 d Y q 1
0.006 43818 4 TS g 4 d Y q 1
0.006 50405 5 TS g 4 d X q 1
0.007 52631 6 TS g 4 d X q 1
0.007 53985 5 TS g 5 d Y q 1
0.008 54875 7 TS g 4 d X q 1
0.008 57101 8 TS g 4 d X q 1
0.009 59327 9 TS g 4 d X q 1
0.009 61553 10 TS g 4 d X q 1
0.010 63797 11 TS g 4 d X q 1
0.010 66041 12 TS g 4 d X q 1
0.011 66125 13 TS g 4 d X q 1
0.011 67227 15 TS g 4 d X q 1
0.012 69471 16 TS g 4 d X q 1
0.014 69760 17 TS g 4 d X q 3
0.017 70866 10 TS g 5 d Y q 19
0.017 71638 11 TS g 5 d Y q 19
0.020 71674 12 TS g 5 d Y q 28
0.050 72296 11 TS g 5 d Y q 141
0.162 72704 21 TS g 4 d X q 141
0.282 72832 19 TS g 4 d Y q 316
0.282 73344 19 TS g 4 d Y q 316
0.286 73443 20 TS g 4 d Y q 316
0.813 73980 20 TS g 4 d X q 711
1.196 73997 22 TS g 4 d X q 1066
1.794 74170 21 TS g 4 d X q 1599
4.873 74986 22 TS g 4 d X q 3597
Final statistics
----------------
Time (s): 5.02934
Solution
--------
Number of items: 22 / 247 (8.90688%)
Item area: 74986 / 2576510 (2.91037%)
Item weight: 0 / 0 (-nan%)
Item profit: 74986 / 2.57651e+06 (2.91037%)
Number of bins: 1 / 1 (100%)
Bin area: 90000 / 90000 (100%)
Bin weight: 0 / 0 (-nan%)
Bin cost: 90000
Waste: 14166
Waste (%): 15.8897
Full waste: 15014
Full waste (%): 16.6822
Area load: 0.833178
Weight load: -nan
X max: 448
Y max: 199
Leftover value: 848
Visualize solution:
python3 scripts/visualize_rectangle.py solution_rectangle.csv
Features:
- Objectives:
- Knapsack
- Bin packing
- Variable-sized bin packing
- Item types:
- Rotations (among the 6 possible rotations)
- Nesting height
- Maximum number of items in a stack containing an item of a given type
- Maximum weight allowed above an item of a given type
- Bin types:
- Maximum weight
- Maximum stack density
- Maximum weight on middle and rear axles
- Unloading constraints: only horizontal/vertical movements, increasing x/y
Example:
python3 scripts/download_data.py --data roadef2022_2024-04-25_bpp
./install/bin/packingsolver_boxstacks \
--verbosity-level 1 \
--items data/boxstacks/roadef2022_2024-04-25_bpp/C/AS/AS_149_items.csv \
--bins data/boxstacks/roadef2022_2024-04-25_bpp/C/AS/AS_149_bins.csv \
--parameters data/boxstacks/roadef2022_2024-04-25_bpp/C/AS/AS_149_parameters.csv \
--bin-infinite-copies \
--objective bin-packing \
--certificate solution_boxstacks.csv \
--time-limit 1
=================================
PackingSolver
=================================
Problem type
------------
BoxStacks
Instance
--------
Objective: BinPacking
Number of item types: 13
Number of items: 118
Number of bin types: 1
Number of bins: 118
Number of groups: 1
Number of defects: 0
Unloading constraint: IncreasingX
Item volume: 196704000000
Bin volume: 13001535000000
Item weight: 17323.9
Bin weight: 2.832e+06
Time Bins Full waste (%) Comment
---- ---- -------------- -------
0.119 2 10.74 iteration 0
Final statistics
----------------
Time (s): 0.119291
Solution
--------
Number of items: 118 / 118 (100%)
Item volume: 1.96704e+11 / 1.96704e+11 (100%)
Item weight: 17323.9 / 17323.9 (100%)
Item profit: 1.96704e+11 / 1.96704e+11 (100%)
Number of stacks: 37
Stack area: 69600000
Number of bins: 2 / 118 (1.69492%)
Bin volume: 220365000000 / 13001535000000 (1.69492%)
Bin area: 74700000 / 4407300000 (1.69492%)
Bin weight: 48000 / 2832000 (1.69492%)
Bin cost: 6
Waste: 19678500000
Waste (%): 9.09431
Full waste: 23661000000
Full waste (%): 10.7372
Volume load: 0.0151293
Area load: 0.015792
Weight load: 0.00611719
X max: 14400
Y max: 2400
Visualize solution:
python3 scripts/visualize_boxstacks.py solution_boxstacks.csv
Features:
- Objectives:
- Knapsack
- Bin packing
- Bin packing with leftovers
- Variable-sized bin packing
- Item types:
- Nesting length
- Maximum number of items in a bin containing an item of a given type
- Maximum weight allowed after an item of a given type
- Bin types:
- Maximum weight
- Item type / bin type eligibility
Example:
./install/bin/packingsolver_onedimensional \
--verbosity-level 2 \
--items data/onedimensional/users/2024-04-21_items.csv \
--bins data/onedimensional/users/2024-04-21_bins.csv \
--parameters data/onedimensional/users/2024-04-21_parameters.csv \
--time-limit 1 \
--certificate solution_onedimensional.csv
=================================
PackingSolver
=================================
Problem type
------------
OneDimensional
Instance
--------
Objective: VariableSizedBinPacking
Number of item types: 7
Number of items: 43554
Number of bin types: 1
Number of bins: 43554
Bin type Length Max wght Cost Copies Copies min
-------- ------ -------- ---- ------ ----------
0 6000 inf 6000 43554 0
Bin type Eligibility
-------- -----------
Item type Length Weight MaxWgtAft MaxStck Profit Copies Eligibility
--------- ------ ------ --------- ------- ------ ------ -----------
0 837 0 inf 2147483647 837 820 -1
1 1587 0 inf 2147483647 1587 26640 -1
2 1987 0 inf 2147483647 1987 372 -1
3 2487 0 inf 2147483647 2487 15602 -1
4 727 0 inf 2147483647 727 40 -1
5 1627 0 inf 2147483647 1627 40 -1
6 747 0 inf 2147483647 747 40 -1
Time Cost # bins Full waste (%) Comment
---- ---- ------ -------------- -------
0.006 8.8338e+07 14723 6.46 SVC it 0
0.011 8.769e+07 14615 5.77 SVC it 1
0.023 8.7624e+07 14604 5.70 SVC it 3
0.027 8.7612e+07 14602 5.69 SVC it 4
0.070 8.757e+07 14595 5.64 CG n 1
Final statistics
----------------
Time (s): 1.00035
Solution
--------
Number of items: 43554 / 43554 (100%)
Item length: 8.26294e+07 / 8.26294e+07 (100%)
Item profit: 8.26294e+07 / 8.26294e+07 (100%)
Number of bins: 14595 / 43554 (33.5101%)
Bin length: 87570000 / 261324000 (33.5101%)
Bin cost: 8.757e+07
Waste: 4940351
Waste (%): 5.64162
Full waste: 4940602
Full waste (%): 5.64189
Bin Type Copies Length Weight # items
--- ---- ------ ------ ------ -------
0 0 124 5969 0 3
1 0 231 4978 0 2
2 0 13320 5669 0 3
3 0 820 5819 0 3
4 0 40 5709 0 3
5 0 40 5729 0 3
6 0 20 5749 0 3
Visualize:
python3 scripts/visualize_onedimensional.py solution_onedimensional.csv
Features:
- Objectives:
- Knapsack
- Open dimension X
- Open dimension Y
- Bin packing
- Bin packing with leftovers
- Variable-sized bin packing
- Item types:
- Polygonal shape (possibly non-convex, possibly with holes)
- Discrete rotations
- Bin types:
- Polygonal shape (possibly non-convex)
- May contain different quality areas
- Minimum distance between each pair of items
- Minimum distance between each item and its container
Example:
./install/bin/packingsolver_irregular \
--verbosity-level 1 \
--input ./data/irregular/opencutlist/knight_armor.json \
--time-limit 10 \
--certificate solution_irregular.json
=================================
PackingSolver
=================================
Problem type
------------
Irregular
Instance
--------
Objective: BinPackingWithLeftovers
Number of item types: 45
Number of items: 100
Number of bin types: 1
Number of bins: 1
Number of defects: 0
Number of rectangular items: 5
Number of circular items: 0
Item area: 2.91022e+06
Smallest item area: 3749.55
Largest item area: 90886.6
Bin area: 5.796e+06
Item-bin minimum spacing: 0
Item-item minimum spacing: 0
Time # bins Leftover Comment
---- ------ -------- -------
0.365 1 1.55619e+06 TS g 0 d 5 q 1
0.367 1 1.64045e+06 TS g 0 d 5 q 1
0.413 1 1.79437e+06 TS g 0 d 0 q 1
0.451 1 1.81666e+06 TS g 0 d 4 q 1
0.520 1 1.98572e+06 TS g 1 d 5 q 1
0.543 1 2.03254e+06 TS g 1 d 4 q 1
2.266 1 2.05049e+06 TS g 1 d 5 q 3
3.159 1 2.05693e+06 TS g 1 d 0 q 4
3.544 1 2.06829e+06 TS g 1 d 1 q 4
4.708 1 2.11687e+06 TS g 1 d 0 q 6
5.137 1 2.12846e+06 TS g 1 d 1 q 6
Final statistics
----------------
Time (s): 10.0096
Solution
--------
Number of items: 100 / 100 (100%)
Item area: 2.91016e+06 / 2.91022e+06 (99.9981%)
Item profit: 2.91022e+06 / 2.91022e+06 (100%)
Number of bins: 1 / 1 (100%)
Bin area: 5796000 / 5796000 (100%)
Bin cost: 5.796e+06
Full waste: 2885838
Full waste (%): 49.7902
X max: 1771.76
Y max: 2070
Leftover value: 2.12846e+06
Visualize:
python3 scripts/visualize_irregular.py solution_irregular.json