Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding support for Sklearn linear regression in EvaDB #1162

Merged
merged 4 commits into from
Sep 22, 2023
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions evadb/binder/statement_binder.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,17 @@ def _bind_create_function_statement(self, node: CreateFunctionStatement):
outputs.append(column)
else:
inputs.append(column)
elif string_comparison_case_insensitive(node.function_type, "sklearn"):
assert (
"predict" in arg_map
), f"Creating {node.function_type} functions expects 'predict' metadata."
# We only support a single predict column for now
predict_columns = set([arg_map["predict"]])
for column in all_column_list:
if column.name in predict_columns:
outputs.append(column)
else:
inputs.append(column)
elif string_comparison_case_insensitive(node.function_type, "forecasting"):
# Forecasting models have only one input column which is horizon
inputs = [ColumnDefinition("horizon", ColumnType.INTEGER, None, None)]
Expand Down
53 changes: 53 additions & 0 deletions evadb/executor/create_function_executor.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@
string_comparison_case_insensitive,
try_to_import_forecast,
try_to_import_ludwig,
try_to_import_sklearn,
try_to_import_torch,
try_to_import_ultralytics,
)
Expand Down Expand Up @@ -117,6 +118,50 @@ def handle_ludwig_function(self):
self.node.metadata,
)

def handle_sklearn_function(self):
"""Handle sklearn functions
Use Sklearn's regression to train models.
"""
try_to_import_sklearn()
from sklearn.linear_model import LinearRegression

assert (
len(self.children) == 1
), "Create sklearn function expects 1 child, finds {}.".format(
len(self.children)
)

aggregated_batch_list = []
child = self.children[0]
for batch in child.exec():
aggregated_batch_list.append(batch)
aggregated_batch = Batch.concat(aggregated_batch_list, copy=False)
aggregated_batch.drop_column_alias()

arg_map = {arg.key: arg.value for arg in self.node.metadata}
model = LinearRegression()
Y = aggregated_batch.frames[arg_map["predict"]]
aggregated_batch.frames.drop([arg_map["predict"]], axis=1, inplace=True)
model.fit(X=aggregated_batch.frames, y=Y)
model_path = os.path.join(
self.db.config.get_value("storage", "model_dir"), self.node.name
)
pickle.dump(model, open(model_path, "wb"))
self.node.metadata.append(
FunctionMetadataCatalogEntry("model_path", model_path)
)

impl_path = Path(f"{self.function_dir}/sklearn.py").absolute().as_posix()
io_list = self._resolve_function_io(None)
return (
self.node.name,
impl_path,
self.node.function_type,
io_list,
self.node.metadata,
)

def handle_ultralytics_function(self):
"""Handle Ultralytics functions"""
try_to_import_ultralytics()
Expand Down Expand Up @@ -332,6 +377,14 @@ def exec(self, *args, **kwargs):
io_list,
metadata,
) = self.handle_ludwig_function()
elif string_comparison_case_insensitive(self.node.function_type, "Sklearn"):
(
name,
impl_path,
function_type,
io_list,
metadata,
) = self.handle_sklearn_function()
elif string_comparison_case_insensitive(self.node.function_type, "Forecasting"):
(
name,
Expand Down
42 changes: 42 additions & 0 deletions evadb/functions/sklearn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
# coding=utf-8
# Copyright 2018-2023 EvaDB
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pickle

import pandas as pd

from evadb.functions.abstract.abstract_function import AbstractFunction
from evadb.utils.generic_utils import try_to_import_sklearn


class GenericSklearnModel(AbstractFunction):
@property
def name(self) -> str:
return "GenericSklearnModel"

def setup(self, model_path: str, **kwargs):
try_to_import_sklearn()

self.model = pickle.load(open(model_path, "rb"))

def forward(self, frames: pd.DataFrame) -> pd.DataFrame:
predictions = self.model.predict(frames.iloc[:, :-1])
predict_df = pd.DataFrame(predictions)
# Assign the prediction column name same as that for data provided.
predict_df.rename(columns={0: frames.columns[-1]}, inplace=True)
xzdandy marked this conversation as resolved.
Show resolved Hide resolved
return predict_df

def to_device(self, device: str):
# TODO figure out how to control the GPU for ludwig models
return self
11 changes: 11 additions & 0 deletions evadb/utils/generic_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -324,6 +324,17 @@ def is_forecast_available() -> bool:
return False


def try_to_import_sklearn():
try:
import sklearn # noqa: F401
from sklearn.linear_model import LinearRegression # noqa: F401
except ImportError:
raise ValueError(
"""Could not import sklearn.
Please install it with `pip install scikit-learn`."""
)


##############################
## VISION
##############################
Expand Down
17 changes: 17 additions & 0 deletions test/integration_tests/long/test_model_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,23 @@ def test_ludwig_automl(self):
self.assertEqual(len(result.columns), 1)
self.assertEqual(len(result), 10)

def test_sklearn_regression(self):
create_predict_function = """
CREATE FUNCTION IF NOT EXISTS PredictHouseRent FROM
( SELECT number_of_rooms, number_of_bathrooms, days_on_market, rental_price FROM HomeRentals )
TYPE Sklearn
PREDICT 'rental_price'
TIME_LIMIT 120;
xzdandy marked this conversation as resolved.
Show resolved Hide resolved
"""
execute_query_fetch_all(self.evadb, create_predict_function)

predict_query = """
SELECT PredictHouseRent(number_of_rooms, number_of_bathrooms, days_on_market, rental_price) FROM HomeRentals LIMIT 10;
"""
result = execute_query_fetch_all(self.evadb, predict_query)
self.assertEqual(len(result.columns), 1)
self.assertEqual(len(result), 10)


if __name__ == "__main__":
unittest.main()