-
Notifications
You must be signed in to change notification settings - Fork 199
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Vector2DOps Trait - Proposal #1025
Changes from 9 commits
5d0e037
7a9a6d9
b6a2227
923b8f6
0ba00f0
fe9df2a
8763ef1
1c132ae
5706059
43d2fef
12155aa
006a48c
10b7f08
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
@@ -0,0 +1,347 @@ | ||||||
//! This module defines the [Vector2DOps] trait and implements it for the | ||||||
//! [Coord] struct. | ||||||
|
||||||
use crate::{Coord, CoordFloat, CoordNum}; | ||||||
|
||||||
/// Defines vector operations for 2D coordinate types which implement CoordFloat | ||||||
/// | ||||||
/// This trait is intended for internal use within the geo crate as a way to | ||||||
/// bring together the various hand-crafted linear algebra operations used | ||||||
/// throughout other algorithms and attached to various structs. | ||||||
/// | ||||||
/// | ||||||
|
||||||
pub trait Vector2DOps<Rhs = Self> | ||||||
where | ||||||
Self: Sized, | ||||||
{ | ||||||
type Scalar: CoordNum + Send + Sync; | ||||||
|
||||||
/// The euclidean distance between this coordinate and the origin | ||||||
/// | ||||||
/// `sqrt(x² + y²)` | ||||||
/// | ||||||
fn magnitude(self) -> Self::Scalar; | ||||||
|
||||||
/// The squared distance between this coordinate and the origin. | ||||||
/// (Avoids the square root calculation when it is not needed) | ||||||
/// | ||||||
/// `x² + y²` | ||||||
/// | ||||||
fn magnitude_squared(self) -> Self::Scalar; | ||||||
|
||||||
/// Rotate this coordinate around the origin by 90 degrees clockwise. | ||||||
/// | ||||||
/// `a.left() => (-a.y, a.x)` | ||||||
/// | ||||||
/// Assumes a coordinate system where positive `y` is up and positive `x` is | ||||||
/// to the right. The described rotation direction is consistent with the | ||||||
/// documentation for [crate::algorithm::rotate::Rotate]. | ||||||
fn left(self) -> Self; | ||||||
|
||||||
/// Rotate this coordinate around the origin by 90 degrees anti-clockwise. | ||||||
/// | ||||||
/// `a.right() => (a.y, -a.x)` | ||||||
/// | ||||||
/// Assumes a coordinate system where positive `y` is up and positive `x` is | ||||||
/// to the right. The described rotation direction is consistent with the | ||||||
/// documentation for [crate::algorithm::rotate::Rotate]. | ||||||
fn right(self) -> Self; | ||||||
|
||||||
/// The inner product of the coordinate components | ||||||
/// | ||||||
/// `a · b = a.x * b.x + a.y * b.y` | ||||||
/// | ||||||
fn dot_product(self, other: Rhs) -> Self::Scalar; | ||||||
|
||||||
/// The calculates the `wedge product` between two vectors. | ||||||
/// | ||||||
/// `a ∧ b = a.x * b.y - a.y * b.x` | ||||||
/// | ||||||
/// Also known as: | ||||||
/// | ||||||
/// - `exterior product` | ||||||
/// - because the wedge product comes from 'Exterior Algebra' | ||||||
/// - `perpendicular product` | ||||||
/// - because it is equivalent to `a.dot(b.right())` | ||||||
/// - `2D cross product` | ||||||
/// - because it is equivalent to the signed magnitude of the | ||||||
/// conventional 3D cross product assuming `z` ordinates are zero | ||||||
/// - `determinant` | ||||||
/// - because it is equivalent to the `determinant` of the 2x2 matrix | ||||||
/// formed by the column-vector inputs. | ||||||
/// | ||||||
/// ## Examples | ||||||
/// | ||||||
/// The following list highlights some examples in geo which might be | ||||||
/// brought together to use this function: | ||||||
/// | ||||||
/// 1. [geo_types::Point::cross_prod()] is already defined on | ||||||
/// [geo_types::Point]... but that it seems to be some other | ||||||
/// operation on 3 points?? | ||||||
/// 2. [geo_types::Line] struct also has a [geo_types::Line::determinant()] | ||||||
/// function which is the same as `line.start.wedge_product(line.end)` | ||||||
/// 3. The [crate::algorithm::Kernel::orient2d()] trait default | ||||||
/// implementation uses cross product to compute orientation. It returns | ||||||
/// an enum, not the numeric value which is needed for line segment | ||||||
/// intersection. | ||||||
/// | ||||||
/// ## Properties | ||||||
/// | ||||||
/// - The absolute value of the cross product is the area of the | ||||||
/// parallelogram formed by the operands | ||||||
/// - Anti-commutative: The sign of the output is reversed if the operands | ||||||
/// are reversed | ||||||
/// - If the operands are colinear with the origin, the value is zero | ||||||
/// - The sign can be used to check if the operands are clockwise with | ||||||
/// respect to the origin, or phrased differently: | ||||||
/// "is a to the left of the line between the origin and b"? | ||||||
/// - If this is what you are using it for, then please use | ||||||
/// [crate::algorithm::Kernel::orient2d()] instead as this is more | ||||||
/// explicit and has a `RobustKernel` option for extra precision. | ||||||
fn wedge_product(self, other: Rhs) -> Self::Scalar; | ||||||
|
||||||
/// Try to find a vector of unit length in the same direction as this | ||||||
/// vector. | ||||||
/// | ||||||
/// Returns `None` if the magnitude of this vector is less than | ||||||
/// `minimum_magnitude` or the magnitude is not finite. | ||||||
/// - For f32 the minimum_magnitude can be set to about `1e-30_f32` | ||||||
/// - For F64 the minimum_magnitude can be set to about `2e-301_f64` | ||||||
/// | ||||||
/// These values should avoid overflowing to Infinity for coordinate values | ||||||
/// in the range typically relevant for spatial data (+-40e6) which is the | ||||||
/// approximate length of the earth's great circle in metres. | ||||||
fn try_normalize(self, minimum_magnitude: Self::Scalar) -> Option<Self>; | ||||||
} | ||||||
|
||||||
impl<T> Vector2DOps for Coord<T> | ||||||
where | ||||||
T: CoordFloat + Send + Sync, | ||||||
{ | ||||||
type Scalar = T; | ||||||
|
||||||
fn wedge_product(self, right: Coord<T>) -> Self::Scalar { | ||||||
self.x * right.y - self.y * right.x | ||||||
} | ||||||
|
||||||
fn dot_product(self, other: Self) -> Self::Scalar { | ||||||
self.x * other.x + self.y * other.y | ||||||
} | ||||||
|
||||||
fn magnitude(self) -> Self::Scalar { | ||||||
(self.x * self.x + self.y * self.y).sqrt() | ||||||
} | ||||||
|
||||||
fn magnitude_squared(self) -> Self::Scalar { | ||||||
self.x * self.x + self.y * self.y | ||||||
} | ||||||
|
||||||
fn left(self) -> Self { | ||||||
Self { | ||||||
x: -self.y, | ||||||
y: self.x, | ||||||
} | ||||||
} | ||||||
|
||||||
fn right(self) -> Self { | ||||||
Self { | ||||||
x: self.y, | ||||||
y: -self.x, | ||||||
} | ||||||
} | ||||||
|
||||||
fn try_normalize(self, minimum_magnitude: Self::Scalar) -> Option<Self> { | ||||||
let magnitude = self.magnitude(); | ||||||
if magnitude.is_finite() && magnitude.abs() > minimum_magnitude { | ||||||
Some(self / magnitude) | ||||||
} else { | ||||||
None | ||||||
} | ||||||
} | ||||||
} | ||||||
|
||||||
#[cfg(test)] | ||||||
mod test { | ||||||
// crate dependencies | ||||||
use crate::coord; | ||||||
|
||||||
// private imports | ||||||
use super::Vector2DOps; | ||||||
|
||||||
#[test] | ||||||
fn test_cross_product() { | ||||||
// perpendicular unit length | ||||||
let a = coord! { x: 1f64, y: 0f64 }; | ||||||
let b = coord! { x: 0f64, y: 1f64 }; | ||||||
|
||||||
// expect the area of parallelogram | ||||||
assert_eq!(a.wedge_product(b), 1f64); | ||||||
// expect swapping will result in negative | ||||||
assert_eq!(b.wedge_product(a), -1f64); | ||||||
|
||||||
// Add skew; expect results should be the same | ||||||
let a = coord! { x: 1f64, y: 0f64 }; | ||||||
let b = coord! { x: 1f64, y: 1f64 }; | ||||||
|
||||||
// expect the area of parallelogram | ||||||
assert_eq!(a.wedge_product(b), 1f64); | ||||||
// expect swapping will result in negative | ||||||
assert_eq!(b.wedge_product(a), -1f64); | ||||||
|
||||||
// Make Colinear; expect zero | ||||||
let a = coord! { x: 2f64, y: 2f64 }; | ||||||
let b = coord! { x: 1f64, y: 1f64 }; | ||||||
assert_eq!(a.wedge_product(b), 0f64); | ||||||
} | ||||||
|
||||||
#[test] | ||||||
fn test_dot_product() { | ||||||
// perpendicular unit length | ||||||
let a = coord! { x: 1f64, y: 0f64 }; | ||||||
let b = coord! { x: 0f64, y: 1f64 }; | ||||||
// expect zero for perpendicular | ||||||
assert_eq!(a.dot_product(b), 0f64); | ||||||
|
||||||
// Parallel, same direction | ||||||
let a = coord! { x: 1f64, y: 0f64 }; | ||||||
let b = coord! { x: 2f64, y: 0f64 }; | ||||||
// expect +ive product of magnitudes | ||||||
assert_eq!(a.dot_product(b), 2f64); | ||||||
// expect swapping will have same result | ||||||
assert_eq!(b.dot_product(a), 2f64); | ||||||
|
||||||
// Parallel, opposite direction | ||||||
let a = coord! { x: 3f64, y: 4f64 }; | ||||||
let b = coord! { x: -3f64, y: -4f64 }; | ||||||
// expect -ive product of magnitudes | ||||||
assert_eq!(a.dot_product(b), -25f64); | ||||||
// expect swapping will have same result | ||||||
assert_eq!(b.dot_product(a), -25f64); | ||||||
} | ||||||
|
||||||
#[test] | ||||||
fn test_magnitude() { | ||||||
let a = coord! { x: 1f64, y: 0f64 }; | ||||||
assert_eq!(a.magnitude(), 1f64); | ||||||
|
||||||
let a = coord! { x: 0f64, y: 0f64 }; | ||||||
assert_eq!(a.magnitude(), 0f64); | ||||||
|
||||||
let a = coord! { x: -3f64, y: 4f64 }; | ||||||
assert_eq!(a.magnitude(), 5f64); | ||||||
} | ||||||
|
||||||
#[test] | ||||||
fn test_magnitude_squared() { | ||||||
let a = coord! { x: 1f64, y: 0f64 }; | ||||||
assert_eq!(a.magnitude_squared(), 1f64); | ||||||
|
||||||
let a = coord! { x: 0f64, y: 0f64 }; | ||||||
assert_eq!(a.magnitude_squared(), 0f64); | ||||||
|
||||||
let a = coord! { x: -3f64, y: 4f64 }; | ||||||
assert_eq!(a.magnitude_squared(), 25f64); | ||||||
} | ||||||
|
||||||
#[test] | ||||||
fn test_left_right() { | ||||||
let a = coord! { x: 1f64, y: 0f64 }; | ||||||
let a_left = coord! { x: 0f64, y: 1f64 }; | ||||||
let a_right = coord! { x: 0f64, y: -1f64 }; | ||||||
|
||||||
assert_eq!(a.left(), a_left); | ||||||
assert_eq!(a.right(), a_right); | ||||||
assert_eq!(a.left(), -a.right()); | ||||||
} | ||||||
|
||||||
#[test] | ||||||
fn test_left_right_match_rotate() { | ||||||
use crate::algorithm::rotate::Rotate; | ||||||
use crate::Point; | ||||||
// The aim of this test is to confirm that wording in documentation is | ||||||
// consistent. | ||||||
|
||||||
// when the user is in a coordinate system where the y axis is flipped | ||||||
// (eg screen coordinates in a HTML canvas), then rotation directions | ||||||
// will be different to those described in the documentation. | ||||||
|
||||||
// The documentation for the Rotate trait says: 'Positive angles are | ||||||
// counter-clockwise, and negative angles are clockwise rotations' | ||||||
|
||||||
let counter_clockwise_rotation_degrees = 90.0; | ||||||
let clockwise_rotation_degrees = -counter_clockwise_rotation_degrees; | ||||||
|
||||||
let a: Point = coord! { x: 1.0, y: 0.0 }.into(); | ||||||
let origin: Point = coord! { x: 0.0, y: 0.0 }.into(); | ||||||
|
||||||
// left is anti-clockwise | ||||||
assert_relative_eq!( | ||||||
Point::from(a.0.left()), | ||||||
a.rotate_around_point(counter_clockwise_rotation_degrees, origin), | ||||||
); | ||||||
// right is clockwise | ||||||
assert_relative_eq!( | ||||||
Point::from(a.0.right()), | ||||||
a.rotate_around_point(clockwise_rotation_degrees, origin), | ||||||
); | ||||||
} | ||||||
|
||||||
#[test] | ||||||
fn test_normalize() { | ||||||
let f64_minimum_threshold = 2e-301f64; | ||||||
// Already Normalized | ||||||
let a = coord! { | ||||||
x: 1.0, | ||||||
y: 0.0 | ||||||
}; | ||||||
assert_relative_eq!(a.try_normalize(f64_minimum_threshold).unwrap(), a); | ||||||
|
||||||
// Already Normalized | ||||||
let a = coord! { | ||||||
x: 1.0 / f64::sqrt(2.0), | ||||||
y: -1.0 / f64::sqrt(2.0) | ||||||
}; | ||||||
assert_relative_eq!(a.try_normalize(f64_minimum_threshold).unwrap(), a); | ||||||
|
||||||
// Non trivial example | ||||||
let a = coord! { x: -10.0, y: 8.0 }; | ||||||
assert_relative_eq!( | ||||||
a.try_normalize(f64_minimum_threshold).unwrap(), | ||||||
coord! { x: -10.0, y: 8.0 } / f64::sqrt(10.0 * 10.0 + 8.0 * 8.0) | ||||||
); | ||||||
|
||||||
// Very Small Input - Fails because below threshold | ||||||
let a = coord! { | ||||||
x: 0.0, | ||||||
y: f64_minimum_threshold / 2.0 | ||||||
}; | ||||||
assert_eq!(a.try_normalize(f64_minimum_threshold), None); | ||||||
|
||||||
// Zero vector - Fails because below threshold | ||||||
let a = coord! { x: 0.0, y: 0.0 }; | ||||||
assert_eq!(a.try_normalize(f64_minimum_threshold), None); | ||||||
|
||||||
// Large vector Pass; | ||||||
// Note: this fails because the magnitude calculation overflows to infinity | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This comment seems wrong - this example passes, right? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. ah yes correct that one is meant to pass... looks like I botched a copy paste |
||||||
// this could be avoided my modifying the implementation to use scaling be avoided using scaling | ||||||
let a = coord! { | ||||||
x: f64::sqrt(f64::MAX/2.0), | ||||||
y: f64::sqrt(f64::MAX/2.0) | ||||||
}; | ||||||
assert!(a.try_normalize(f64_minimum_threshold).is_some()); | ||||||
|
||||||
// Large Vector Fail; | ||||||
// Note: This test uses the unstable float_next_up_down feature | ||||||
// let a = coord! { x: f64::sqrt(f64::MAX/2.0), y: f64::next_up(f64::sqrt(f64::MAX/2.0)) }; | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Not a big deal, but if you wanted to show it failing how about something simpler like:
Suggested change
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Hi @michaelkirk; I think you meant to remove the nightly-only The trouble is that for very large floats we don't know the next largest representable number so we can get the unexpected result; assert_eq!(f64::MAX/2.0 + 1.0, f64::MAX/2.0); // passes unexpectedly I have just spotted that there is already a dependency on the I just had a bit of a noodle and it turns out the difference between println!("{:e}", f64::MAX / 2.0);
println!("{:e}", (f64::MAX/2.0).next_up());
println!("{:e}", (f64::MAX/2.0).next_up() - f64::MAX / 2.0);
// 8.988465674311579e307
// 8.98846567431158e307
// 9.9792015476736e291 Now I am wondering about the value of some of the asserts in Maybe the best thing is to try add some notes to the documentation rather than try to check everything in the tests? Just thinking out loud here; There are basically 2 ways it can go wrong;
Ok after that 45 min decent into madness I have an idea; it is easier to just check if the magnitude and the final result are finite after the calculation. There is no point guarding against invalid float operations since they do not panic anyway. Also this new version is less annoying to use because you don't need to provide a minimum threshold; fn try_normalize(self) -> Option<Self> {
let magnitude = self.magnitude();
let result = self / magnitude;
if result.is_finite() && magnitude.is_finite() {
Some(result)
} else {
None
}
}
fn is_finite(self) -> bool {
self.x.is_finite() && self.y.is_finite()
} I have also improved the doc comment in my next commit. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Thanks for reading through my unreasonable suggestion and coming up with something better! |
||||||
// assert!(a.try_normalize(1e-10f64).is_none()); | ||||||
|
||||||
// NaN | ||||||
let a = coord! { x: f64::NAN, y: 0.0 }; | ||||||
assert_eq!(a.try_normalize(f64_minimum_threshold), None); | ||||||
|
||||||
// Infinite | ||||||
let a = coord! { x: f64::INFINITY, y: 0.0 }; | ||||||
assert_eq!(a.try_normalize(f64_minimum_threshold), None); | ||||||
} | ||||||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
nit: comment out of date since this is no longer private