Skip to content

Commit

Permalink
Prepare release of TF-DF 1.8.1 and YDF 1.7.0
Browse files Browse the repository at this point in the history
PiperOrigin-RevId: 583389146
  • Loading branch information
rstz authored and copybara-github committed Nov 17, 2023
1 parent 7f04d57 commit 0d464d1
Show file tree
Hide file tree
Showing 2 changed files with 24 additions and 19 deletions.
12 changes: 9 additions & 3 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,17 @@
# Changelog

## HEAD
## 1.8.0 - 2023-11-17

### Feature

- Support for GBT distances.
- Remove old snapshots automatically for GBT training.

### Fix

Regression with Mean Squared Error loss and Mean Average error loss incorrectly
clamped the gradients, leading to incorrect predictions.
- Regression with Mean Squared Error loss and Mean Average error loss
incorrectly clamped the gradients, leading to incorrect predictions.
- Change dependency from boost to boost_math for faster builds.

## 1.7.0 - 2023-10-20

Expand Down
31 changes: 15 additions & 16 deletions documentation/public/docs/hyperparameters.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,6 @@ learner: "RANDOM_FOREST"
num_trees: 1000
}
```

## GRADIENT_BOOSTED_TREES

A [Gradient Boosted Trees](https://statweb.stanford.edu/~jhf/ftp/trebst.pdf)
Expand All @@ -34,9 +33,9 @@ tree is trained to predict and then "correct" for the errors of the previously
trained trees (more precisely each tree predict the gradient of the loss
relative to the model output).

### Protobuffer Training configuration
### Protobuffer training configuration

The hyper-parameter protobuffer are:
The hyper-parameter protobuffers are used with the C++ and CLI APIs.

- <a href="https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/abstract_learner.proto">learner/abstract_learner.proto</a>
- <a href="https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/decision_tree/decision_tree.proto">learner/decision_tree/decision_tree.proto</a>
Expand Down Expand Up @@ -69,7 +68,7 @@ reasonable time.
- `sparse_oblique_normalization`: MIN_MAX
- `sparse_oblique_num_projections_exponent`: 1

### Generic Hyper-parameters
### Hyper-parameters

#### [adapt_subsample_for_maximum_training_duration](https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/gradient_boosted_trees/gradient_boosted_trees.proto)

Expand Down Expand Up @@ -513,9 +512,9 @@ cases e.g. when there are more features than training examples.

It is probably the most well-known of the Decision Forest training algorithms.

### Protobuffer Training configuration
### Protobuffer training configuration

The hyper-parameter protobuffer are:
The hyper-parameter protobuffers are used with the C++ and CLI APIs.

- <a href="https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/abstract_learner.proto">learner/abstract_learner.proto</a>
- <a href="https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/decision_tree/decision_tree.proto">learner/decision_tree/decision_tree.proto</a>
Expand Down Expand Up @@ -548,7 +547,7 @@ reasonable time.
- `sparse_oblique_normalization`: MIN_MAX
- `sparse_oblique_num_projections_exponent`: 1

### Generic Hyper-parameters
### Hyper-parameters

#### [adapt_bootstrap_size_ratio_for_maximum_training_duration](https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/random_forest/random_forest.proto)

Expand Down Expand Up @@ -869,15 +868,15 @@ contains conditions (also known as splits) while the leaf nodes contain
prediction values. The training dataset is divided in two parts. The first is
used to grow the tree while the second is used to prune the tree.

### Protobuffer Training configuration
### Protobuffer training configuration

The hyper-parameter protobuffer are:
The hyper-parameter protobuffers are used with the C++ and CLI APIs.

- <a href="https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/abstract_learner.proto">learner/abstract_learner.proto</a>
- <a href="https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/cart/cart.proto">learner/cart/cart.proto</a>
- <a href="https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/decision_tree/decision_tree.proto">learner/decision_tree/decision_tree.proto</a>

### Generic Hyper-parameters
### Hyper-parameters

#### [allow_na_conditions](https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/decision_tree/decision_tree.proto)

Expand Down Expand Up @@ -1126,16 +1125,16 @@ Exact distributed version of the Gradient Boosted Tree learning algorithm. See
the documentation of the non-distributed Gradient Boosted Tree learning
algorithm for an introduction to GBTs.

### Protobuffer Training configuration
### Protobuffer training configuration

The hyper-parameter protobuffer are:
The hyper-parameter protobuffers are used with the C++ and CLI APIs.

- <a href="https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/abstract_learner.proto">learner/abstract_learner.proto</a>
- <a href="https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/decision_tree/decision_tree.proto">learner/decision_tree/decision_tree.proto</a>
- <a href="https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/distributed_gradient_boosted_trees/distributed_gradient_boosted_trees.proto">learner/distributed_gradient_boosted_trees/distributed_gradient_boosted_trees.proto</a>
- <a href="https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/gradient_boosted_trees/gradient_boosted_trees.proto">learner/gradient_boosted_trees/gradient_boosted_trees.proto</a>

### Generic Hyper-parameters
### Hyper-parameters

#### [apply_link_function](https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/gradient_boosted_trees/gradient_boosted_trees.proto)

Expand Down Expand Up @@ -1263,13 +1262,13 @@ The hyper-parameter protobuffer are:

## HYPERPARAMETER_OPTIMIZER

### Protobuffer Training configuration
### Protobuffer training configuration

The hyper-parameter protobuffer are:
The hyper-parameter protobuffers are used with the C++ and CLI APIs.

- <a href="https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/abstract_learner.proto">learner/abstract_learner.proto</a>

### Generic Hyper-parameters
### Hyper-parameters

#### [maximum_model_size_in_memory_in_bytes](https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/abstract_learner.proto)

Expand Down

0 comments on commit 0d464d1

Please sign in to comment.