Skip to content

Commit

Permalink
Merge pull request #59 from hailo-ai/update-to-version-2.8
Browse files Browse the repository at this point in the history
update-to-version-2.8.0
  • Loading branch information
HailoModelZoo authored Jun 29, 2023
2 parents 4c21e42 + e844e38 commit 543cb9a
Show file tree
Hide file tree
Showing 426 changed files with 3,762 additions and 1,434 deletions.
4 changes: 2 additions & 2 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -22,14 +22,14 @@ Hailo Model Zoo
:height: 20


.. |compiler| image:: https://img.shields.io/badge/Hailo%20Dataflow%20Compiler-3.23.0-brightgreen.svg
.. |compiler| image:: https://img.shields.io/badge/Hailo%20Dataflow%20Compiler-3.24.0-brightgreen.svg
:target: https://hailo.ai/contact-us/
:alt: Hailo Dataflow Compiler
:width: 180
:height: 20


.. |runtime| image:: https://img.shields.io/badge/HailoRT%20(optional)-4.13.0-brightgreen.svg
.. |runtime| image:: https://img.shields.io/badge/HailoRT%20(optional)-4.14.0-brightgreen.svg
:target: https://hailo.ai/contact-us/
:alt: HailoRT
:width: 170
Expand Down
35 changes: 35 additions & 0 deletions docs/CHANGELOG.rst
Original file line number Diff line number Diff line change
@@ -1,6 +1,41 @@
Changelog
=========

**v2.8**

* Update to use Dataflow Compiler v3.24.0 (`developer-zone <https://hailo.ai/developer-zone/>`_)
* Update to use HailoRT 4.14.0 (`developer-zone <https://hailo.ai/developer-zone/>`_)
* The Hailo Model Zoo now supports the following vision transformers models:

* vit_tiny / vit_small / vit_base - encoder based transformer with batchnorm for classification
* detr_resnet_v1_18_bn - encoder/decoder transformer for object detection
* clip_resnet_50 - Contrastive Language-Image Pre-Training for zero-shot classification
* yolov5s_c3tr - object detection model with a MHSA block

* Using HailoRT-pp for postprocessing of the following variants:

* yolov5
* yolox
* ssd
* efficientdet
* yolov7

* New Models:

* repvgg_a1 / repvgg_a2 - classification
* yolov8_seg: yolov8n_seg / yolov8s_seg / yolov8m_seg - instance segmentation
* yolov6n_0.2.1 - object detection
* zero_dce - low-light enhancement

* New retraining dockers for:

* yolov8
* yolov8_seg

* Enable compilation for hailo15h device
* Enable evaluation of models with RGBX / NV12 input format
* Bug fixes

**v2.7**

* Update to use Dataflow Compiler v3.23.0 (`developer-zone <https://hailo.ai/developer-zone/>`_)
Expand Down
70 changes: 70 additions & 0 deletions docs/DATA.rst
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,8 @@ We recommend to define the data directory path yourself, by setting the ``HMZ_DA
* `CelebA`_
* `LFW`_
* `BSD100`_
* `CIFAR100`_
* `LOL`_

.. _ImageNet:

Expand Down Expand Up @@ -728,3 +730,71 @@ Manual Download (Optional)
python hailo_model_zoo/datasets/create_bsd100_tfrecord.py val --lr /path/to/LRbicx4 --hr /path/to/GTmod12
python hailo_model_zoo/datasets/create_bsd100_tfrecord.py calib --lr /path/to/LRbicx4 --hr /path/to/GTmod12
.. _CIFAR100:

CIFAR100
------

To evaluate/optimize/compile the CLIP models of the
Hailo Model Zoo you should generate the CIFAR100 TFRecord files.

Run the creation scripts:

.. code-block::
python hailo_model_zoo/datasets/create_cifar100_tfrecord.py val
python hailo_model_zoo/datasets/create_cifar100_tfrecord.py calib
.. _LOL:

LOL
------

To evaluate/optimize/compile the low light enhancement models of the
Hailo Model Zoo you should generate the LOL TFRecord files.

Run the creation scripts:

.. code-block::
python hailo_model_zoo/datasets/create_lol_tfrecord.py val
python hailo_model_zoo/datasets/create_lol_tfrecord.py calib
Manual Download (Optional)
^^^^^^^^^^^^^^^^^^^^^^^^^^

#. Download the LOL dataset from `here <"https://drive.google.com/uc?export=download&id=157bjO1_cFuSd0HWDUuAmcHRJDVyWpOxB&authuser=0">`_ and extract.
The expected dataset structure:

.. code-block::
lol_dataset
|_ eval15
|_ high
| |_ 111.png
| |_ 146.png
| |_ ...
|_ low
| |_ 111.png
| |_ 146.png
| |_ ...
|_ our485
|_ high
| |_ 100.png
| |_ 101.png
| |_ ...
|_ low
| |_ 100.png
| |_ 101.png
| |_ ...
#. Run the scripts:

.. code-block::
python hailo_model_zoo/datasets/create_lol_tfrecord.py val --ll /path/to/val/lowlight/images --lle /path/to/val/highlight/images
python hailo_model_zoo/datasets/create_lol_tfrecord.py calib --ll /path/to/train/lowlight/images --lle /path/to/train/highlight/images
22 changes: 18 additions & 4 deletions docs/GETTING_STARTED.rst
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,8 @@ System Requirements

* Ubuntu 20.04/22.04, 64 bit (supported also on Windows, under WSL2)
* Python 3.8/3.9/3.10, including ``pip`` and ``virtualenv``
* Hailo Dataflow Compiler v3.23.0 (Obtain from `hailo.ai <http://hailo.ai>`_\ )
* HailoRT 4.13.0 (Obtain from `hailo.ai <http://hailo.ai>`_\ ) - required only for inference on Hailo-8.
* Hailo Dataflow Compiler v3.24.0 (Obtain from `hailo.ai <http://hailo.ai>`_\ )
* HailoRT 4.14.0 (Obtain from `hailo.ai <http://hailo.ai>`_\ ) - required only for inference on Hailo-8.
* The Hailo Model Zoo supports Hailo-8 connected via PCIe only.
* Nvidia’s Pascal/Turing/Ampere GPU architecture (such as Titan X Pascal, GTX 1080 Ti, RTX 2080 Ti, or RTX A4000)
* GPU driver version 470
Expand Down Expand Up @@ -109,6 +109,12 @@ The pre-trained models are stored on AWS S3 and will be downloaded automatically
hailomz parse <model_name>
* The default compilation target is Hailo-8. To compile for different architecture (Hailo-15H for example), use ``--hw_arch hailo15h`` as CLI argument:

.. code-block::
hailomz parse <model_name> --hw-arch hailo15h
Profiling
---------

Expand Down Expand Up @@ -167,17 +173,23 @@ To run the Hailo compiler and generate the Hailo Executable Format (HEF) file:
hailomz compile <model_name>
By default the compilation target is Hailo-8. To compile for a different architecture use ``--hw-arch`` command line argument:

.. code-block::
hailomz compile <model_name> --hw-arch hailo15h
To generate the HEF starting from a previously generated HAR file:

.. code-block::
hailomz compile <model_name> --har /path/to/model.har
hailomz compile <model_name> --har /path/to/model.har --hw-arch <hailo8|hailo15h>
In order to achieve highest performance, one could use the performance flag:

.. code-block::
hailomz optimize <model_name> --performance
hailomz optimize <model_name> --performance --hw-arch <hailo8|hailo15h>
The flag will be ignored on models that do not support this feature.
The default and performance model scripts are located on `hailo_model_zoo/cfg/alls/`
Expand Down Expand Up @@ -230,6 +242,8 @@ To explore other options (for example: changing the default batch-size) use:
hailomz eval --help
* Currently MZ evaluation can be done only on hailo8

Visualization
-------------

Expand Down
1 change: 0 additions & 1 deletion docs/HAILO_MODELS.rst
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@ Each model is accompanied with its own README, retraining docker and retraining


* FLOPs in the table are counted as MAC operations.
* All models were compiled using Hailo Dataflow Compiler v3.23.0
* Supported tasks:

* `Object Detection`_
Expand Down
Loading

0 comments on commit 543cb9a

Please sign in to comment.