Skip to content

Source code for the paper "Locally Stylized Neural Radiance Fields"

Notifications You must be signed in to change notification settings

hkust-vgd/nerfstyle

Repository files navigation

Locally Stylized Neural Radiance Fields

Description

Source code for the paper "Locally Stylized Neural Radiance Fields". (arxiv)

Setup

Python environment

Code is tested with a single NVIDIA RTX 3090 GPU, using Python 3.10, PyTorch 2.0 and CUDA 11.7.

# Setup conda env
conda create --name nerfstyle python=3.10
conda activate nerfstyle

# Install PyTorch (CUDA 11.7)
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia

# Install tiny-cuda-nn
pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch

# Install other dependencies
pip install dacite simple_parsing pyyaml ipykernel tabulate einops GitPython matplotlib torch-ema urllib3 idna certifi oauthlib google-auth werkzeug ninja imageio

Training datasets

Style images and segementations

Segmentations of style images are computed using Segment Anything. Precomputed segmentations for some of the style images are provided here.

Usage

Reconstruction stage

Trains the base NeRF model and classification network.

mkdir runs
python train.py --log-dir runs/room_base --data-cfg cfgs/dataset/llff_room.yaml

# Train with sparsity regulation
python train.py --log-dir runs/room_base --data-cfg cfgs/dataset/llff_room.yaml  --sparsity_lambda 0.01

Sparsity regulation encourages the radiance field to minimize the predicted density in areas that correspond to empty space. It gives the stylization result a more "solid" effect.

Stylization stage

python train.py --log-dir runs/room_scream --ckpt <path_to_recon_stage_ckpt> --style-image <style_img>.jpg --style-seg-path <style_img>.npz  --max-steps 512

Inference

python render.py <path_to_stylization_stage_ckpt>

About

Source code for the paper "Locally Stylized Neural Radiance Fields"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published