Skip to content
/ k2sc Public
forked from OxES/k2sc

K2 systematics correction using Gaussian processes

License

Notifications You must be signed in to change notification settings

hvidy/k2sc

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

K2 Systematics Correction

Build Status Licence arXiv

Python package for K2 systematics correction using Gaussian processes.

Installation

git clone https://github.com/OxES/k2sc.git
cd k2sc
python setup.py install --user

Basic usage

A MAST K2 light curve can be detrended by calling

k2sc <filename>

where <filename> is either a MAST light curve filename, list of files, or a directory.

Useful flags

  • --flux-type can be either pdc or sap
  • --de-max-time <ss> maximum time (in seconds) to run global GP hyperparameter optimization (differential evolution) before switching to local optimization.
  • --de-npop <nn> size of the de population, can be set to 50 to speed up the optimization.
  • --save-dir <path> defines where to save the detrended files
  • --logfile <filename>

MPI

K2SC supports MPI automatically (requires MPI4Py.) Call k2sc as

mpirun -n N k2sc <files>

where <files> is a list of files or a directory to be detrended (for example, path/to/ktwo*.fits).

Requires

  • NumPy, SciPy, astropy, George, MPI4Py

Citing

If you use K2SC in your reserach, please cite

Aigrain, S., Parviainen, H. & Pope, B. (2016, accepted to MNRAS), arXiv:1603.09167

or use this ready-made BibTeX entry

@article{Aigrain2016,
    arxivId = {1603.09167},
    author = {Aigrain, Suzanne and Parviainen, Hannu and Pope, Benjamin},
    keywords = {data analysis,methods,photometry,planetary systems,techniques},
    title = {{K2SC: Flexible systematics correction and detrending of K2 light curves using Gaussian Process regression}},
    url = {http://arxiv.org/abs/1603.09167},
    year = {2016}
}

Authors

  • Hannu Parviainen
  • Suzanne Aigrain
  • Benjamin Pope

About

K2 systematics correction using Gaussian processes

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 83.0%
  • Python 17.0%